Quickhull

De testwiki
Revisión del 11:46 7 may 2021 de imported>Wiki LIC
(difs.) ← Revisión anterior | Revisión actual (difs.) | Revisión siguiente → (difs.)
Ir a la navegación Ir a la búsqueda

Plantilla:Ficha de algoritmo

Quickhull es un método para calcular el cierre convexo de un conjunto finito de puntos (generalmente en el plano 2D, pero también existen versiones para dimensiones superiores). Emplea una técnica basada en divide y vencerás similar a la empleada por el algoritmo de ordenación quicksort, del que toma su nombre.[1]

Su complejidad promedio es Θ(n * log(n)), aunque en el peor caso puede tomar O(n2) en situaciones de alta simetría o con conjuntos de puntos situados en forma de circunferencia.

Algoritmo

La versión en 2D del algoritmo Quickhull puede dividirse en los siguiente pasos:

  1. Buscar un par de puntos optimales, generalmente los puntos con menor y mayor coordenada X, ya que estos siempre forman parte del cierre convexo.
  2. Usar la línea entre ambos puntos para dividir el conjunto en dos subconjuntos que serán procesador de forma recursiva.
  3. Determinar el punto situado a mayor distancia de la línea anterior. Junto a los dos puntos anteriores, formará un triángulo.
  4. Todos los puntos situados en el interior del triángulo pueden ser descartados, ya que no formarán parte del cierre convexo.
  5. Repetir los dos pasos anteriores en los dos lados del triángulo (no en el lado inicial).
  6. Repetir hasta que no queden puntos sin clasificar. Los puntos seleccionados forman el cierre convexo..

Implementaciones públicas

Los autores del algoritmo mantienen una implementación del algoritmo mediante una librería en lenguaje C que puede ser llamada desde varios lenguajes (como C++, Python). El código puede descargarse desde la página del proyecto www.qhull.org o desde su repositorio de GitHub

Referencias y enlaces externos

Plantilla:Listaref

Plantilla:Control de autoridades