Diagonal espacial

De testwiki
Revisión del 19:06 9 abr 2020 de imported>ElProConLag (WPCleaner v2.02 - Check Wikipedia (Enlace igual que el texto))
(difs.) ← Revisión anterior | Revisión actual (difs.) | Revisión siguiente → (difs.)
Ir a la navegación Ir a la búsqueda
AC '(en azul) es una diagonal espacial, mientras que AC (en rojo) es una diagonal facial

En geometría, una diagonal espacial (también diagonal interior o diagonal del cuerpo) de un poliedro es una línea que conecta dos vértices que no están en la misma cara. Las diagonales espaciales contrastan con las diagonales de cara, que conectan entre sí vértices de la misma cara (pero no en la misma arista).[1]

Por ejemplo, una pirámide no tiene diagonales espaciales, mientras que un cubo (que se muestra a la derecha) o, más generalmente, un paralelepípedo tiene cuatro diagonales espaciales.

Diagonal axial

Una diagonal axial es una diagonal espacial que pasa a través del centro de un poliedro.

Por ejemplo, en un cubo con una longitud de arista a, las cuatro diagonales del espacio son diagonales axiales, de longitud común a3. Más generalmente, en un cuboide con aristas de longitudes a, b, y c, las cuatro diagonales espaciales son axiales, con longitud común a2+b2+c2.

Un octaedro regular con longitud de arista a tiene 3 diagonales axiales de longitud a2.

Un icosaedro regular tiene 6 diagonales axiales de longitud a2+φ, dónde φ es la proporción áurea (1+5)/2.[2]

Diagonales espaciales de cubos mágicos

Un cuadrado mágico es una disposición de números en una cuadrícula cuadrada para que la suma de los números a lo largo de cada fila, columna y diagonal sea la misma. Del mismo modo, se puede definir un cubo mágico como una disposición de números en una cuadrícula cúbica, de modo que la suma de los números en las cuatro diagonales del espacio debe ser la misma que la suma de los números en cada fila, cada columna y cada pilar.

Véase también

Referencias

Plantilla:Listaref

Bibliografía

  • John R. Hendricks, The Pan-3-Agonal Magic Cube, Journal of Recreational Mathematics 5:1:1972, pp 51–54. First published mention of pan-3-agonals
  • Hendricks, J. R., Magic Squares to Tesseracts by Computer, 1998, 0-9684700-0-9, page 49
  • Heinz & Hendricks, Magic Square Lexicon: Illustrated, 2000, 0-9687985-0-0, pages 99,165
  • Guy, R. K. Unsolved Problems in Number Theory, 2nd ed. New York: Springer-Verlag, p. 173, 1994.

Enlaces externos

Plantilla:Control de autoridades

  1. William F. Kern, James R Bland,Solid Mensuration with proofs, 1938, p.116
  2. Plantilla:Obra citada