Carácter (matemáticas)

De testwiki
Revisión del 18:43 13 nov 2022 de imported>Traitrich (Reemplazos con Replacer: «carácteres»)
(difs.) ← Revisión anterior | Revisión actual (difs.) | Revisión siguiente → (difs.)
Ir a la navegación Ir a la búsqueda

En matemáticas, un carácter es (más comúnmente) un tipo especial de función de grupo sobre un cuerpo (como el de los números complejos). El término posee al menos dos significados distintos, pero superpuestos.[1]

Carácter multiplicativo

Plantilla:AP

Un carácter multiplicativo (o carácter lineal, o simplemente carácter) en un grupo G es un homomorfismo de grupos de G de un grupo multiplicativo sobre un cuerpo Plantilla:Harv, normalmente el cuerpo de los números complejos. Si G es cualquier grupo, entonces el conjunto Ch(G) de estos morfismos forma un grupo abeliano bajo la multiplicación puntual.

Este grupo se denomina grupo carácter de G. A veces, solo se consideran caracteres unitarios (por lo tanto, la imagen está en la circunferencia goniométrica); otros homomorfismos de este tipo se denominan entonces "cuasi-carácteres". Los caracteres de Dirichlet puede verse como un caso especial de esta definición.

Los caracteres multiplicativos son linealmente independientes, es decir, si χ1,χ2,,χn son caracteres diferentes en un grupo G, de a1χ1+a2χ2++anχn=0 se sigue que a1=a2==an=0.

Carácter de una representación

Plantilla:AP

El carácter χ:GF de una representación ϕ:GGL(V) de un grupo G sobre un espacio vectorial V de dimensión finita sobre un cuerpo F es la traza de la representación ϕ Plantilla:Harv, es decir

χϕ(g)=Tr(ϕ(g)) para gG

En general, la traza no es un homomorfismo de grupo, ni el conjunto de trazas forma un grupo. Los caracteres de las representaciones unidimensionales son idénticos a las representaciones unidimensionales, por lo que la noción anterior de carácter multiplicativo puede verse como un caso especial de caracteres de dimensiones superiores. El estudio de las representaciones que utilizan caracteres se denomina teoría de carácteres y los caracteres unidimensionales también se denominan carácteres lineales en este contexto.

Definición alternativa

Si se restringe al grupo abeliano finito con representación 1×1 en (es decir, GL(V)=GL(1,)), la siguiente definición alternativa sería equivalente a la anterior (para grupos abelianos, cada representación matricial se descompone en una suma directa de representaciones 1×1. Para grupos no abelianos, la definición original sería más general que esta):

Un carácter χ del grupo (G,) es un homomorfismo de grupo χ:G*, es decir, χ(xy)=χ(x)χ(y) para todos los x,yG.

Si G es un grupo abeliano finito, los caracteres juegan el papel de armónicos. Para infinitos grupos abelianos, lo anterior sería reemplazado por χ:G𝕋 donde 𝕋 es un grupo circular.

Véase también

Plantilla:Lista de columnas

Referencias

Plantilla:Listaref

Bibliografía

Enlaces externos

Plantilla:Control de autoridades