Teorema de Skolem–Noether

De testwiki
Revisión del 12:29 20 sep 2019 de imported>Aosbot (Mantenimiento de Control de autoridades)
(difs.) ← Revisión anterior | Revisión actual (difs.) | Revisión siguiente → (difs.)
Ir a la navegación Ir a la búsqueda

En matemáticas, el teorema de Skolem–Noether, nombrado así en honor a Thoralf Skolem y Emmy Noether, es un resultado importante en teoría de anillos que caracteriza los automorfismos de los anillos simples.

El teorema fue publicado por primera vez por Skolem en 1927 en su trabajo Zur Theorie der assoziativen Zahlensysteme (en alemán: Sobre la teoría de los sistemas numéricos asociativos) y posteriormente redescubierto por Noether.

Teorema de Skolem-Noether

En una formulación general, sean A y B anillos simples, y K = Z(B) el centro de B. Supóngase que la dimensión de B sobre el cuerpo K es finito, es decir, B es un álgebra central simple (K es un cuerpo puesto que cualquier xK, por centralidad, genera un ideal bilátero I0, así que la simplicidad de B implica que I=B y por tanto x es invertible).

Entonces, si

f,g : AB

son homomorfismos del álgebra K, existe una unidad b en B tal que

g(a) = b·f(a)b-1

para todo a en A.

Implicaciones

Referencias

  • Thoralf Skolem, Zur Theorie der assoziativen Zahlensysteme, 1927

Plantilla:Control de autoridades