Maxterm

De testwiki
Revisión del 10:26 2 mar 2020 de imported>Aosbot (PR:CW: Eliminando errores de sintaxis)
(difs.) ← Revisión anterior | Revisión actual (difs.) | Revisión siguiente → (difs.)
Ir a la navegación Ir a la búsqueda

Plantilla:Referencias Un maxterm, máxterm, maxtérmino o maxitérmino consiste únicamente en una expresión algebraica booleana de disyunción lógica de una serie de variables booleanas, cada una de las cuales puede estar negada o no. Como es una disyunción lógica, solamente se evalúa como falsa (0) para una única combinación de esas variables.

Un maxterm se forma sumando (OR lógico) todas las variables, negando aquellas que valen 1 en la combinación para la cual el maxterm vale 0. Para n variables booleanas, existen 2n maxterms, uno para cada posible combinación de ellas. Se emplean para expresar una función lógica en forma canónica conjuntiva.

Los maxterms son una expresión dual de los minterm, donde, en vez de usar operaciones OR, se utilizan operaciones AND, procediendo de forma similar.

Notación

Asumiendo un determinado orden para las variables, un maxterm puede denotarse abreviadamente como Mi, valiendo 0 sólo para la combinación de variables booleanas que codifican en base 2 el número decimal i. Tal codificación establece una correspondencia entre las variables y los dígitos, de forma que a cada variable negada en el maxterm, corresponde un dígito 0 en la misma posición y si no, un 1.

Por ejemplo:

  • Para 3 variables {a,b,c}, el maxterm M6 será aquel que solamente vale 0 para la combinación abc=110 (6 en base 2), esto es, M6=a¯+b¯+c.
  • Para 4 variables a,b,c,d, el maxterm M6 es M6=a+b¯+c¯+d (0110=6).
  • El maxterm M13 para 5 variables será M13=a+b¯+c¯+d+e¯ (01101=13)

Por ejemplo, los siguientes términos canónicos son maxtérminos:

a+b¯+c
a¯+b+c

Forma canónica conjuntiva

Una función lógica puede expresarse en forma canónica conjuntiva, es decir como producto de todos sus maxterm, representada así: ΠM(x1,...,xn), donde los valores x1,...,xn son el número de las filas de la tabla de verdad en que el resultado es 0.

Ejemplo
ΠM(1,2) corresponde a la función cuyo resultado se representa en la siguiente tabla de verdad porque las filas codificadas en binario como 1 y 2 (segunda y tercera) tienen como valor 0:
x1 x2 Resultado
0 0 1
0 1 0
1 0 0
1 1 1

Por ejemplo, el maxterm a¯+b+c¯ sólo vale 0 para la combinación a=1, b=0 y c=1. Para cualquier otra combinación, esa expresión vale 1.

Ejemplo

Basados en una función de 3 variables (a, b, c), y considerando la dificultad de poner el negado de una variable como una barrita superior (aunque el apóstrofe es también utilizado), tenemos lo siguiente:

f(a,b,c) = (a+bc+ac)b <-Forma no normalizada

Puede expresarse en maxtérminos, por lo cual demanda una interpretación normalizada de Producto de Sumas (Normalizada = PS)

Expresión Comentarios
= (a+bc+ac)b Variable "a" separa la multiplicación a su lado derecho
= [(a+b)(a+c)+ac]b Variable "ac" se incluye en cada suma a su izquierda
= (ac+a+b)(ac+a+c)b Variables "ac separadas por las sumas a su lado
= (a+b+a)(a+b+c)(a+c+a)(a+c+c)(b) Eliminar términos por ley de identidad
= (a+b+c)(a+c)(b) Forma normalizada

Puede expresarse en maxtérminos de forma normalizada como un producto de sumas (forma canónica conjuntiva):

Expresión Comentarios
= (a+b+c)(a+c)(b) Agregar variables faltantes a cada término
= (a+b+c)(a+c+bb)(b+aa+cc) Despejar en la forma PS
= (a+b+c)(a+c+b)(a+c+b)(a+b+c)(a+b+c)(a+b+c)(a+b+c) Eliminar términos idénticos
= (a+b+c)(a+b+c)(a+b+c)(a+b+c)(a+b+c) Forma canónica
= M2 * M0 * M4 * M1 * M5 Forma expresada en producto de maxtérminos
= M(0,1,2,4,5) Forma en función de maxtérminos

+De este modo tenemos los maxtérminos, lo cual facilita (sobre todo cuando son 3 o más variables) encontrar la solución de la función. En la tabla de verdad, los maxtérminos se representan con un 0 cuando están presentes. Recordemos que cada negado en cada término vale 1.

+He aquí la comprobación:

a b c (a+bc+ac)b Max
0 0 0 0 0
0 0 1 0 0
0 1 0 0 0
0 1 1 1 1
1 0 0 0 0
1 0 1 0 0
1 1 0 1 1
1 1 1 1 1

Recuerde que la lógica empleada en los maxtérminos es exactamente opuesta a la aplicada en los mintérminos.

Véase también

Plantilla:Control de autoridades