Coeficiente phi

De testwiki
Revisión del 12:17 12 ene 2025 de 2a0c:5a87:360b:6800:8fd5:3db9:bab0:2fd7 (discusión)
(difs.) ← Revisión anterior | Revisión actual (difs.) | Revisión siguiente → (difs.)
Ir a la navegación Ir a la búsqueda

En estadística, el coeficiente phi φ o rφ, también llamado coeficiente de correlación de Matthews es una medida de la asociación entre dos variables binarias. Esta medida es similar al coeficiente de correlación de Pearson en su interpretación. De hecho, un coeficiente de correlación de Pearson estimado para dos variables binarias nos dará el coeficiente phi.[1] El coeficiente phi también relacionado con el estadístico de chi-cuadrado para una tabla de contingencia de a 2×2.[2]

ϕ=χ2n

Donde n es el total del número de observaciones. Se considera que dos variables binarias están positivamente asociadas si la mayor parte de los datos caen dentro de las celdas diagonales. Por el contrario, dos variables binarias se consideran negativamente asociadas si la mayoría de los datos se salen de la diagonal. Si tenemos una tabla de 2×2 para dos variables aleatorias, xy

y = 1 y = 0 total
x = 1 n11 n10 n1
x = 0 n01 n00 n0
total n1 n0 n

donde n11, n10, n01, n00, son "cuentas no negativas celdad celda" que se suman a  n, el número total de observaciones. El coeficiente phi que describe la asociación de x e y es

ϕ=n11n00n10n01n1n0n0n1

Valores máximos

Aunque en computación el coeficiente de correlación de Pearson se reduce al coeficiente phi en el caso 2×2, la interpretación del coeficiente de correlación de Pearson y el coeficiente phi se deben tomar con precaución. El coeficiente de correlación de Pearson va desde −1 a +1, donde ±1 concordancia o discordancia perfectas, y el 0 indica ausencia de relación. El coeficiente phi tiene un valor máximo que está determinado por la distribución de dos variables. Si ambas tienen un split 50/50, el rango de phi irá de −1 a +1. Ver Davenport El-Sanhury (1991) para una exhaustiva discusión.[3]

Referencias

Plantilla:Listaref

Véase también

Plantilla:Control de autoridades

  1. Guilford, J. (1936). Psychometric Methods. New York: McGraw–Hill Book Company, Inc.
  2. Everitt B.S. (2002) The Cambridge Dictionary of Statistics, CUP. ISBN 0-521-81099-X
  3. Davenport, E., & El-Sanhury, N. (1991). Phi/Phimax: Review and Synthesis. Educational and Psychological Measurement, 51, 821–828.