Tabla de Cayley

De testwiki
Revisión del 21:24 27 oct 2024 de imported>IsomorphismOfLife (growthexperiments-addimage-summary-summary: 1)
(difs.) ← Revisión anterior | Revisión actual (difs.) | Revisión siguiente → (difs.)
Ir a la navegación Ir a la búsqueda
Arthur Cayley

La tabla de Cayley de un grupo finito es una tabla que describe cómo es la operación de dicho grupo. Presenta una estructura muy similar a la famosa tabla pitagórica.

Fueron introducidas por Arthur Cayley en un artículo de 1854 («On The Theory of Groups, as depending on the symbolic equation θ n = 1»), en el que describe cualquier grupo en término de permutaciones.[1]

Estructura de la tabla

Dado el grupo finito G={g1, g2, ..., gn}, su tabla de Cayley tendrá n filas y n columnas. En la fila i, columna j, aparece el resultado de la operación gi*gj (donde * es la operación del grupo).

Ejemplos

  • Tomamos G={0,1,2} con la operación suma módulo 3. Entonces su tabla de Cayley es:
+ 0 1 2
0 0 1 2
1 1 2 0
2 2 0 1

id, g2=(123213), g3=(123132),g4=(123321),g5=(123231),g6=(123312).

La tabla de Cayley para (S3, ) es:

id g2 g3 g4 g5 g6
id id g2 g3 g4 g5 g6
g2 g2 g1 g5 g6 g3 g4
g3 g3 g6 g1 g5 g4 g2
g4 g4 g5 g6 g1 g2 g3
g5 g5 g4 g2 g3 g6 g1
g6 g6 g3 g4 g2 g1 g5

Propiedades básicas

  • Un grupo es abeliano si y solo si su tabla de Cayley es simétrica.
  • En la tabla de Cayley, cada elemento del grupo aparece una y solo una vez en cada fila y cada columna. O sea que cada fila y columna es una permutación de los elementos del grupo.[2]

Referencias

Plantilla:Listaref

Plantilla:Control de autoridades