Archivo:Argument principle1.svg
De testwiki
Ir a la navegación
Ir a la búsqueda
Tamaño de esta previsualización PNG del archivo SVG: 212 × 173 píxeles. Otras resoluciones: 294 × 240 píxeles | 588 × 480 píxeles | 941 × 768 píxeles | 1255 × 1024 píxeles | 2510 × 2048 píxeles.
Archivo original (archivo SVG, nominalmente 212 × 173 píxeles, tamaño de archivo: 11 kB)
Este archivo es de Wikimedia Commons y puede usarse en otros proyectos. La descripción en su página de descripción del archivo se muestra debajo.
Resumen
| DescripciónArgument principle1.svg |
Français : Principe de l'argument English: Argument principle. The simple contour C (black), the zeros of f (blue) and the poles of f (red). Here we have |
|||
| Fecha | ||||
| Fuente | Trabajo propio | |||
| Autor | Archibald | |||
| Otras versiones |
|
|||
| SVG desarrollo InfoField |
Licencia
| Public domainPublic domainfalsefalse |
| Este trabajo ha sido liberado al dominio público por su autor, Archibald. Esto aplica para todo el mundo. En algunos países esto puede no ser legalmente factible; si ello ocurriese: Archibald otorga a cualquier persona el derecho de usar este trabajo para cualquier propósito, sin ningún tipo de condición, a menos que éstas sean requeridas por la ley. |
Source code
function main() % draw a closed spline curve with some points inside
curve_linewidth=1.8; arrowsize=8; arrow_type=2; % make filled trig arrow
ball_radius=0.015; % how big to make the points representing the zeros
x=[0 1 1.2 0 0]; y=[0 0.1 1 1 0.5]; % points the spline will go thru
n=length(x);
P=5; Q=n+2*P+1; % P will denote the amount of overlap of the path with itself
% Make the 'periodic' sequence xp=[x(1) x(2) x(3) ... x(n) x(1) x(2) x(3) ... ]
% of length Q. Same for yp.
for i=1:Q
j=rem(i, n)+1; % rem() is the remainder of division of i by n
xp(i)=x(j);
yp(i)=y(j);
end
% do the spline interpolation
t=1:length(xp);
N=100; % how fine to make the interpolation
tt=1:(1/N):length(xp);
xx=spline(t, xp, tt);
yy=spline(t, yp, tt);
% discard the redundant overlap pieces
start=N*(P-1)+1;
stop=N*(n+P-1)+1;
xx=xx(start:stop);
yy=yy(start:stop);
figure(1); clf; hold on; axis equal; axis off; % prepare the screen
plot(xx, yy, 'k', 'LineWidth', curve_linewidth)% plot the path
% plot the residues and the poles -- see the ball() function below
ball(0.5, 0.7, ball_radius, [1, 0, 0]); % red
ball(0.3187, 0.3024, ball_radius, [0, 0, 1]); % blue
ball(0.7231, 0.4441, ball_radius, [0, 0, 1]);
ball(0.7981, 0.7776, ball_radius, [0, 0, 1]);
ball(0.2854, 0.8026, ball_radius, [1, 0, 0]);
ball(0.6397, 0.1773, ball_radius, [1, 0, 0]);
ball(0.2896, 0.5525, ball_radius, [0, 0, 1]);
ball(0.9774, 0.5817, ball_radius, [1, 0, 0]);
ball(0.6189, 1.0068, ball_radius, [1, 0, 0]);
% place the two arrows showing the orientation of the contour
shift=80; arrow([xx(shift) yy(shift)], [xx(shift+10) yy(shift+10)], ...
curve_linewidth, arrowsize, pi/8,arrow_type, [0, 0, 0])
shift=270; arrow([xx(shift) yy(shift)], [xx(shift+10) yy(shift+10)], ...
curve_linewidth, arrowsize, pi/8,arrow_type, [0, 0, 0])
axis([min(xx)-1, max(xx)+1, min(yy)-1, max(yy)+1]); % image frame
saveas(gcf, 'argument_principle.eps', 'psc2')% save to file
disp('Saved to argument_principle.eps. Get antialiased .png in an editor.')
%%%%%%%%%%%%%%%%%%%%% auxiliary functions ball() and arrow() %%%%%%%%%%%%%%%%%%
function ball(x, y, radius, color) % draw a ball of given uniform color
Theta=0:0.1:2*pi;
X=radius*cos(Theta)+x;
Y=radius*sin(Theta)+y;
H=fill(X, Y, color);
set(H, 'EdgeColor', color);
function arrow(start, stop, thickness, arrowsize, sharpness, arrow_type, color)
% draw a line with an arrow at the end
% start is the x,y point where the line starts
% stop is the x,y point where the line stops
% thickness is an optional parameter giving the thickness of the lines
% arrowsize is an optional argument that will give the size of the arrow
% It is assumed that the axis limits are already set
% 0 < sharpness < pi/4 determines how sharp to make the arrow
% arrow_type draws the arrow in different styles. Values are 0, 1, 2, 3.
% 8/4/93 Jeffery Faneuff
% Copyright (c) 1988-93 by the MathWorks, Inc.
% Modified by Oleg Alexandrov 2/16/03
if nargin <=6
color=[0, 0, 0]; % default color
end
if (nargin <=5)
arrow_type=0; % the default arrow, it looks like this: ->
end
if (nargin <=4)
sharpness=pi/4; % the arrow sharpness - default = pi/4
end
if nargin<=3
xl = get(gca,'xlim');
yl = get(gca,'ylim');
xd = xl(2)-xl(1);
yd = yl(2)-yl(1);
arrowsize = (xd + yd) / 2; % this sets the default arrow size
end
if (nargin<=2)
thickness=0.5; % default thickness
end
xdif = stop(1) - start(1);
ydif = stop(2) - start(2);
if (xdif == 0)
if (ydif >0)
theta=pi/2;
else
theta=-pi/2;
end
else
theta = atan(ydif/xdif); % the angle has to point according to the slope
end
if(xdif>=0)
arrowsize = -arrowsize;
end
if (arrow_type == 0) % draw the arrow like two sticks originating from its vertex
xx = [start(1), stop(1),(stop(1)+0.02*arrowsize*cos(theta+sharpness)),...
NaN,stop(1), (stop(1)+0.02*arrowsize*cos(theta-sharpness))];
yy = [start(2), stop(2), (stop(2)+0.02*arrowsize*sin(theta+sharpness)),...
NaN,stop(2), (stop(2)+0.02*arrowsize*sin(theta-sharpness))];
plot(xx,yy, 'LineWidth', thickness, 'color', color)
end
if (arrow_type == 1) % draw the arrow like an empty triangle
xx = [stop(1),(stop(1)+0.02*arrowsize*cos(theta+sharpness)), ...
stop(1)+0.02*arrowsize*cos(theta-sharpness)];
xx=[xx xx(1) xx(2)];
yy = [stop(2),(stop(2)+0.02*arrowsize*sin(theta+sharpness)), ...
stop(2)+0.02*arrowsize*sin(theta-sharpness)];
yy=[yy yy(1) yy(2)];
plot(xx,yy, 'LineWidth', thickness, 'color', color)
% plot the arrow stick
plot([start(1), stop(1)+0.02*arrowsize*cos(theta)*cos(sharpness)], ...
[start(2), stop(2)+0.02*arrowsize*sin(theta)*cos(sharpness)], ...
'LineWidth', thickness, 'color', color)
end
if (arrow_type==2) % draw the arrow like a full triangle
xx = [stop(1),(stop(1)+0.02*arrowsize*cos(theta+sharpness)), ...
stop(1)+0.02*arrowsize*cos(theta-sharpness),stop(1)];
yy = [stop(2),(stop(2)+0.02*arrowsize*sin(theta+sharpness)), ...
stop(2)+0.02*arrowsize*sin(theta-sharpness),stop(2)];
H=fill(xx, yy, color);% fill with black
set(H, 'EdgeColor', 'none')
% plot the arrow stick
plot([start(1) stop(1)+0.01*arrowsize*cos(theta)], ...
[start(2), stop(2)+0.01*arrowsize*sin(theta)], ...
'LineWidth', thickness, 'color', color)
end
if (arrow_type==3) % draw the arrow like a filled 'curvilinear' triangle
curvature=0.5; % change here to make the curved part more (or less) curved
radius=0.02*arrowsize*max(curvature, tan(sharpness));
x1=stop(1)+0.02*arrowsize*cos(theta+sharpness);
y1=stop(2)+0.02*arrowsize*sin(theta+sharpness);
x2=stop(1)+0.02*arrowsize*cos(theta)*cos(sharpness);
y2=stop(2)+0.02*arrowsize*sin(theta)*cos(sharpness);
d1=sqrt((x1-x2)^2+(y1-y2)^2);
d2=sqrt(radius^2-d1^2);
d3=sqrt((stop(1)-x2)^2+(stop(2)-y2)^2);
center(1)=stop(1)+(d2+d3)*cos(theta);
center(2)=stop(2)+(d2+d3)*sin(theta);
alpha=atan(d1/d2);
Alpha=-alpha:0.05:alpha;
xx=center(1)-radius*cos(Alpha+theta);
yy=center(2)-radius*sin(Alpha+theta);
xx=[xx stop(1) xx(1)];
yy=[yy stop(2) yy(1)];
H=fill(xx, yy, color);% fill with black
set(H, 'EdgeColor', 'none')
% plot the arrow stick
plot([start(1) center(1)-radius*cos(theta)], [start(2), center(2)- ...
radius*sin(theta)], 'LineWidth', thickness, 'color', color);
end
Leyendas
Añade una explicación corta acerca de lo que representa este archivo
Elementos representados en este archivo
representa a
Algún valor sin elemento de Wikidata
22 jul 2009
image/svg+xml
485a85608d8d3ae44125c50faf0a8bdc77805d16
10 942 byte
173 píxel
212 píxel
Historial del archivo
Haz clic sobre una fecha y hora para ver el archivo tal como apareció en ese momento.
| Fecha y hora | Miniatura | Dimensiones | Usuario | Comentario | |
|---|---|---|---|---|---|
| actual | 18:51 22 jul 2009 | 212 × 173 (11 kB) | wikimediacommons>Archibald~commonswiki | {{Information |Description={{fr|1=Principe de l'argument}} |Source=travail personnel (own work) |Author=Archibald |Date=20090722 |Permission= |other_versions= }} Category:Complex analysis |
Usos del archivo
La siguiente página usa este archivo: