Archivo:Relation1011.svg

De testwiki
Ir a la navegación Ir a la búsqueda
Archivo original (archivo SVG, nominalmente 384 × 280 píxeles, tamaño de archivo: 7 kB)

Este archivo es de Wikimedia Commons y puede usarse en otros proyectos. La descripción en su página de descripción del archivo se muestra debajo.

Resumen

This Venn diagram is meant to represent a relation between


Set theory: The subset relation

The relation tells, that the set is empty:    =

In written formulas:

The relation tells, that the set is empty:   

Under this condition, several set operations, not equivalent in general, produce equivalent results.
These equivalences define the subset relation:

Venn diagrams written formulas
       =             
       =             
       =             
       =             
       =             
       =             
       =             
       =             

The sign tells, that two statements about sets mean the same.
The sign = tells, that two sets contain the same elements.


Propositional logic: The logical implication

The relation tells, that the statement is never true:   

In written formulas:

The relation tells, that the statement is never true:   

Under this condition, several logic operations, not equivalent in general, produce equivalent results.
These equivalences define the logical implication:

Venn diagrams written formulas
                   
                   
                   
                   
                   
                   
                   
                   

Especially the last line in this table is important:
The logical implication tells, that the material implication is always true.
The material implication is the same as .
Note: Names like logical implication and material implication are used in many different ways, and shouldn't be taken too serious.

The sign tells, that two statements about statements about whatever objects mean the same.
The sign tells, that two statements about whatever objects mean the same.



Important relations
Set theory: subset disjoint subdisjoint equal complementary
Logic: implication contrary subcontrary equivalent contradictory


Operations and relations in set theory and logic

 
c
          
A = A
1111 1111
 
Ac  Bc
true
A ↔ A
 
 B
 
 Bc
AA
 
 
 Bc
1110 0111 1110 0111
 
 Bc
¬A  ¬B
A → ¬B
 
 B
 B
A ← ¬B
 
Ac B
 
A B
A¬B
 
 
A = Bc
A¬B
 
 
A B
1101 0110 1011 1101 0110 1011
 
Bc
 ¬B
A ← B
 
A
 B
A ↔ ¬B
 
Ac
¬A  B
A → B
 
B
 
B =
AB
 
 
A = c
A¬B
 
 
A =
AB
 
 
B = c
1100 0101 1010 0011 1100 0101 1010 0011
¬B
 
 
 Bc
A
 
 
(A  B)c
¬A
 
 
Ac  B
B
 
Bfalse
 
Atrue
 
 
A = B
Afalse
 
Btrue
 
0100 1001 0010 0100 1001 0010
 ¬B
 
 
Ac  Bc
 B
 
 
 B
¬A  B
 
AB
 
1000 0001 1000 0001
¬A  ¬B
 
 
 B
 
 
A = Ac
0000 0000
false
A ↔ ¬A
A¬A
 
These sets (statements) have complements (negations).
They are in the opposite position within this matrix.
These relations are statements, and have negations.
They are shown in a separate matrix in the box below.


Esta imagen no es elegible para estar sujeta a derecho de autor y por tanto está en el dominio público, porque consiste enteramente en información que es de propiedad común y carece de autoría original.

Leyendas

Añade una explicación corta acerca de lo que representa este archivo

Elementos representados en este archivo

representa a

image/svg+xml

126721ea8e2df964530259b2f565e4672d8691c6

Historial del archivo

Haz clic sobre una fecha y hora para ver el archivo tal como apareció en ese momento.

Fecha y horaMiniaturaDimensionesUsuarioComentario
actual23:46 7 may 2010Miniatura de la versión del 23:46 7 may 2010384 × 280 (7 kB)wikimediacommons>Watchducklayout change

La siguiente página usa este archivo: