Archivo:Relation1011.svg
Este archivo es de Wikimedia Commons y puede usarse en otros proyectos. La descripción en su página de descripción del archivo se muestra debajo.
Resumen
This Venn diagram is meant to represent a relation between
- two sets in set theory,
- or two statements in propositional logic respectively.
Set theory: The subset relation
The relation
tells, that the set
is empty:
=
In written formulas:
The relation tells, that the set
is empty:
Under this condition, several set operations, not equivalent in general, produce equivalent results.
These equivalences define the subset relation:
| Venn diagrams | written formulas |
|---|---|
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| |
The sign tells, that two statements about sets mean the same.
The sign = tells, that two sets contain the same elements.
Propositional logic: The logical implication
The relation
tells, that the statement
is never true: ![]()
In written formulas:
The relation tells, that the statement
is never true:
Under this condition, several logic operations, not equivalent in general, produce equivalent results.
These equivalences define the logical implication:
| Venn diagrams | written formulas |
|---|---|
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| |
Especially the last line in this table is important:
The logical implication tells, that the material implication
is always true.
The material implication is the same as
.
Note: Names like logical implication and material implication are used in many different ways, and shouldn't be taken too serious.
The sign tells, that two statements about statements about whatever objects mean the same.
The sign tells, that two statements about whatever objects mean the same.
| Set theory: | subset | disjoint | subdisjoint | equal | complementary |
| Logic: | implication | contrary | subcontrary | equivalent | contradictory |
Operations and relations in set theory and logic
| ∅c |
A = A |
|||||||||||||
| Ac |
true A ↔ A |
A |
A |
A |
A |
|||||||||
| A |
¬A A → ¬B |
A |
A A ← ¬B |
Ac |
A |
A |
A = Bc |
A |
A |
|||||
| Bc |
A A ← B |
A |
A A ↔ ¬B |
Ac |
¬A A → B |
B |
B = ∅ |
A |
A = ∅c |
A |
A = ∅ |
A |
B = ∅c | |
| ¬B |
A |
A |
(A |
¬A |
Ac |
B |
B |
A |
A = B |
A |
B | |||
| A |
Ac |
A |
A |
¬A |
A |
|||||||||
| ¬A |
∅ |
A |
A = Ac |
|||||||||||
| false A ↔ ¬A |
A |
|||||||||||||
| These sets (statements) have complements (negations). They are in the opposite position within this matrix. |
These relations are statements, and have negations. They are shown in a separate matrix in the box below. | |||||||||||||
| more relations | ||||
|---|---|---|---|---|
|
| Public domainPublic domainfalsefalse |
| Esta imagen no es elegible para estar sujeta a derecho de autor y por tanto está en el dominio público, porque consiste enteramente en información que es de propiedad común y carece de autoría original. |
Leyendas
Elementos representados en este archivo
representa a
6969 byte
image/svg+xml
126721ea8e2df964530259b2f565e4672d8691c6
Historial del archivo
Haz clic sobre una fecha y hora para ver el archivo tal como apareció en ese momento.
| Fecha y hora | Miniatura | Dimensiones | Usuario | Comentario | |
|---|---|---|---|---|---|
| actual | 23:46 7 may 2010 | 384 × 280 (7 kB) | wikimediacommons>Watchduck | layout change |
Usos del archivo
La siguiente página usa este archivo:



