Polígono con forma de estrella

De testwiki
Revisión del 04:05 16 ene 2024 de imported>BenjaBot ((Bot) Normalización de fechas)
(difs.) ← Revisión anterior | Revisión actual (difs.) | Revisión siguiente → (difs.)
Ir a la navegación Ir a la búsqueda

Plantilla:Distinguir

Un polígono en forma de estrella (arriba). Su núcleo se muestra en la parte inferior en rojo

En geometría, un polígono en forma de estrella es un polígono plano que es un dominio en estrella, es decir, un polígono que contiene un punto a partir del cual todo el límite del polígono es visible.

Formalmente, un polígono Plantilla:Mvar tiene forma de estrella si existe al menos un punto Plantilla:Mvar tal que para cada punto Plantilla:Mvar de Plantilla:Mvar el segmento zp se encuentre completamente dentro de Plantilla:Mvar.[1] El conjunto de todos los puntos Plantilla:Mvar con esta propiedad (es decir, el conjunto de puntos desde los cuales todo Plantilla:Mvar es visible) se denomina núcleo de Plantilla:Mvar.

Si un polígono en forma de estrella es convexo, la distancia de enlace entre dos de sus puntos (el número mínimo de segmentos de línea secuenciales suficientes para conectar esos puntos) es 1, por lo que el diámetro de enlace del polígono (la distancia máxima de enlace sobre todos los pares de puntos) es 1. Si un polígono en forma de estrella no es convexo, la distancia de enlace entre un punto en el núcleo y cualquier otro punto en el polígono es 1, mientras que la distancia de enlace entre dos puntos cualesquiera que están en el polígono pero fuera del núcleo es 1 o 2; en este caso, la distancia máxima del enlace es 2.

Ejemplos

Algoritmos

Probar si un polígono tiene forma de estrella y encontrar un único punto en el núcleo se puede resolver en tiempo lineal formulando el problema como un caso de programación lineal, y consecuentemente, aplicando técnicas de programación lineal de baja dimensión (véase http://www.inf.ethz .ch/personal/emo/PublFiles/SubexLinProg_ALG16_96.pdf, página 16).

Cada arista de un polígono define un semiplano interior, el semiplano cuyo límite se encuentra en la línea recta que contiene la arista y que contiene los puntos del polígono en un entorno de cualquier punto interior de la arista. El núcleo de un polígono es la intersección de todos sus semiplanos interiores. La intersección de un conjunto arbitrario de N semiplanos se puede encontrar en tiempo Θ(N log N) utilizando el algoritmo conocido como divide y vencerás.[1] Sin embargo, para el caso de núcleos de polígonos, es posible un método más rápido: Plantilla:Harvtxt[2] presentaron un algoritmo para construir el núcleo en tiempo lineal.

Véase también

Referencias

Plantilla:Listaref

Plantilla:Control de autoridades