Momento estándar

De testwiki
Revisión del 18:37 28 nov 2024 de imported>Ecolab24
(difs.) ← Revisión anterior | Revisión actual (difs.) | Revisión siguiente → (difs.)
Ir a la navegación Ir a la búsqueda

Plantilla:Referencias

En teoría de la probabilidad y estadística, el k-simo momento estándar de una distribución de probabilidad es μkσk donde μk es el k-simo momento centrado sobre la media y σ es la desviación estándar.

Es la normalización del k-simo momento centrado con respecto a la desviación estándar. La potencia de k es porque los momentos crecen como xk, lo que significa que μk(λX)=λkμk(X) son polinomios homogéneos de grado k, y así los momentos estándar son invariantes en escala. Mientras los momentos centrados tienen dimensión, los momentos estándar, no.

  • El primer momento estándar es cero, porque el primer momento centrado sobre la media es cero.
  • El segundo momento estándar es uno, porque el segundo momento sobre la media es igual a la varianza (el cuadrado de la desviación estándar)
  • El tercer momento estándar es la asimetría. El grado de asimetría de una distribución se denomina sesgo hacia la derecho o hacia la izquierda; no debe confundirse con sesgo muestral (ver artículo "Skewness" en inglés).
  • El cuarto momento estándar sirve para obtener la curtosis.

Véase también

Plantilla:Control de autoridades