Función de Möbius

De testwiki
Revisión del 20:30 17 sep 2022 de imported>Wiki LIC
(difs.) ← Revisión anterior | Revisión actual (difs.) | Revisión siguiente → (difs.)
Ir a la navegación Ir a la búsqueda

Plantilla:Ficha de serie entera

La función de Möbius μ(n), nombrada así en honor a August Ferdinand Möbius, es una función multiplicativa estudiada en teoría de números y en combinatoria.

Definición

μ(n) está definida para todos los enteros positivos n[1] y tiene valores en {-1, 0, 1} dependiendo en la factorización de n en sus factores primos. Se define como sigue:

  • μ(n) = 1 si n es libre de cuadrados y tiene un número par de factores primos.
  • μ(n) = -1 si n es libre de cuadrados y tiene un número impar de factores primos.
  • μ(n) = 0 si n es divisible por algún cuadrado.

Una definición equivalente se define haciendo uso de las funciones ω(n) y Ω(n), donde:

  • ω(n) obtiene el número de primos distintos que dividen el número.
  • Ω(n) obtiene el número de factores primos de n, incluyendo sus multiplicidades. Claramente, ω(n) ≤ Ω(n).

Así, se define la función de Möbius como Plantilla:Ecuación

La definición implica que μ(1) = 1, ya que 1 tiene 0 factores primos distintos, por lo tanto, un número par.

Representación

La tabla de valores de μ(n) para los veinte primeros números enteros positivos Plantilla:OEIS es:[2]

n 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
μ(n) 1 −1 −1 0 −1 1 −1 0 0 1 −1 0 −1 1 1 0 −1 0 −1 0

Los 50 primeros valores de la función μ(n), representados en la gráfica siguiente:

los 50 primeros valores de la función μ(n).

Propiedades y aplicaciones

La función de Möbius es multiplicativa, y tiene gran relevancia en la teoría de las funciones multiplicativas y aritméticas puesto que aparece en la fórmula de inversión de Möbius. La suma sobre todos los divisores positivos de n de la función de Möbius es cero excepto cuando n = 1. Plantilla:Ecuación Otras aplicaciones de μ(n) en combinatoria están relacionadas con el uso del teorema de Pólya en grupos combinatorios.

Teoría de números

Plantilla:AP En teoría de números, la función de Mertens está emparentada con la función de Möbius, y se define como: Plantilla:Ecuación para todo número natural n. Esta función está relacionada con las posiciones de los ceros de la función ζ de Euler-Riemann y con la conjetura de Riemann.

Véase también

Referencias

Plantilla:Listaref

Enlaces externos

Plantilla:Control de autoridades

  1. I. Vinogradov. Fundamentos de la teoría de los números. Editorial Mir, Moscú, 1977, segunda edición.
  2. Vinogradov. Op. cit.