Anexo:Fórmulas de reducción para integrales

De testwiki
Ir a la navegación Ir a la búsqueda

En ocasiones la integración definida o indefinida de funciones de una variable se facilita mediante las llamadas fórmulas de reducción. Son éstas una cierta forma de poner en relación integrales que, además de depender de una determinada variable independiente u, también son dependientes de un parámetro n, con otras de la misma (o parecida) especie en las que ese parámetro aparece reducido a otro menor, esto es, fórmulas como


f(u,n)du=g(u,n)+af(u,nb)du


Otras veces los parámetros pueden ser más de uno.

La siguiente es una lista de esta clase de fórmulas de reducción, la mayor parte de las veces deducidas mediante la técnica de integración por partes. Cada una de ellas tiene la limitación de no ser aplicable para los respectivos valores de los coeficientes que anulen alguno de los denominadores.


Fórmulas de reducción para integrales racionales e irracionales

Que contienen expresiones lineales

In=(au±bpu±q)ndu=(au±b)np(n1)(pu±q)n1+anp(n1)In1


In=(b±auq±pu)ndu=(b±au)np(n1)(q±pu)n1+anp(n1)In1


Im,n=du(au±b)m(pu±q)n=1a(n1)(bp±aq)(au±b)m1(pu±q)n1+m+n2(n1)(bp±aq)Im,n1


Im,n=(au±b)m(pu±q)n=(au±b)m+1(pu±q)na(m+n+1)na(aq±bp)(m+n+1)Im,n1


Im,n=undu(a+bu)m=unb(m1)(a+bu)m1+nb(m1)Im1,n1


In=undua+bu=2b(2n+1)una+bu2na(2n+1)bIn1


Im,n=(r+su)n(a+bu)mdu=(r+su)n(m1)b(a+bu)m1+ns(m1)bIm1,n1


Im,n=1un(a+bu)mdu=(a+bu)m(n1)un1+mbn1Im1,n1


In=1una+budu=1(n1)aun1(a+bu)3/2(2n5)b2(n1)aIn1


Im,n=un(a+bu)mdu=1(m+n+1)bun(a+bu)m+1na(m+n+1)bIm,n1


Im,n=un(a+bu)mdu=1m+n+1un+1(a+bu)m+mam+n+1Im1,n


In=una+budu=2(2n+3)bun(a+bu)3/22na(2n+3)bIn1


Im,n=duun(a+bu)m=1(n1)un1(a+bu)mmbn1Im+1,n1


In=duuna+bu=1(n1)aun1a+bu(2n3)b2(n1)aIn1


Im,n=duun(a+bu)m=1(m1)bun(a+bu)m1n(m1)bIm1,n+1


Im,n=duun(a+bu)m=1(n1)aun1(a+bu)m1(m+n2)b(n1)aIm,n1


Im,n=duun(a+bu)m=1(m1)aun1(a+bu)m1+m+n2(m1)aIm1,n


Que contienen expresiones cuadráticas

In=du(a2±u2)n=u2a2(n1)(a2±u2)n1+2n32a2(n1)In1


In=du(u2±a2)n=±u2a2(n1)(u2±a2)n1±2n32a2(n1)In1


In=(a2±u2)ndu=u(a2±u2)n2n+1+2a2n2n+1In1


In=(u2a2)ndu=u(u2a2)n2n+12a2n2n+1In1


Im,n=umdu(a2±u2)n=um12(n1)(a2±u2)n1±m12(n1)Im2,n1


In=undua2u2=1nun1a2u2+n1na2In2


Im,n=umdu(u2±a2)n=um12(n1)(u2±a2)n1+m12(n1)Im2,n1


In=unduu2±a2=1nun1u2±a2n1nIn2


Im,n=1un(a2±u2)mdu=1(n1)un1(a2±u2)m±2mn1Im1,n2


Im,n=1un(u2±a2)mdu=1(n1)un1(u2±a2)m+2mn1Im1,n2


Im,n=1un(a2±u2)mdu=1(2mn+1)un1(a2±u2)m+(n1)a22mn+1Im1,n


Im,n=1un(u2±a2)mdu=1(2mn+1)un1(u2±a2)m±(n1)a22mn+1Im1,n


In=1unu2±a2du=1(n1)a2un1(u2±a2)3/2n4(n1)a2In2


Im,n=1un(a2±u2)mdu=2(m+1)(a2±u2)m+1(n1)2a2un1±2(m+1)(2mn+3)(n1)2a2Im,n2


In=1una2u2du=1(n1)a2un1(a2u2)3/2n4(n1)a2In2


Im,n=un(u2±a2)mdu=12m+n+1un1(u2±a2)m+1(n1)a22m+n+1Im,n2


In=unu2±a2du=1n+2un1(u2±a2)3/2n1n+2a2In2


Im,n=un(a2±u2)mdu=±12m+n+1un1(a2±u2)m+1(n1)a22m+n+1Im,n2


In=una2u2du=1n+2un1(a2u2)3/2n1n+1a2In2


Im,n=un(u2±a2)mdu=12m+n+1un+1(a2±u2)m±2ma22m+n+1Im1,n


Im,n=un(a2±u2)mdu=12m+n+1un+1(u2±a2)m+2ma22m+n+1Im1,n


Im,n=duun(a2±u2)m=12(m1)a2un1(a2±u2)m1+2m+n32(m1)a2Im1,n


In=duuna2u2=1(n1)a2un1a2u2+n2(n1)a2In2


Im,n=duun(u2±a2)m=±12(m1)a2un1(u2±a2)m1±2m+n32(m1)a2Im1,n


In=duunu2±a2=1(n1)a2un1u2±a2n2(n1)a2In2


Im,n=duun(a2±u2)m=1(n1)a2un1(a2±u2)m12m+n3(n1)a2Im,n2


Im,n=duun(u2±a2)m=1(n1)a2un1(u2±a2)m12m+n3(n1)a2Im,n2


In=du(au2+bu+c)n=2au+b(n1)(4acb2)(au2+bu+c)n1+2(2n3)a(n1)(4acb2)In1

Que contienen otras expresiones

Im=du(un±an)m=±un(m1)an(u±an)m1±n(m1)1n(m1)anIm1


Im=du(an±un)m=un(m1)an(an±un)m1+n(m1)1n(m1)anIm1


Im,n=umduan±un=1mn+1umn+1anImn,n


Im,n=duum(un±an)=1(m1)um1Imn,n


Im=duu(un±an)m=±1n(m1)an(un±an)m1±1anIm1


Ir,m=duur(un±an)m=±1n(m1)anur1(un±an)m1±1an(1+r1n(m1))Ir,m1


Ir,m=duur(an±un)m=1n(m1)anur1(an±un)m1+1an(1+r1n(m1))Ir,m1


Ir,m=duur(un±an)m=1(r1)anur1(un±an)m11an(1+nm1r1)Irn,m


Ir,m=duur(an±un)m=1(r1)anur1(an±un)m11an(1+nm1r1)Irn,m


Ir,m=urdu(un±an)m=urn+1n(m1)(un±an)m1rn+1n(m1)Irn,m1


Ir,m=urdu(an±un)m=urn+1n(m1)(an±un)m1±rn+1n(m1)Irn,m1


Ir,m=urdu(un±an)m=±ur+1n(m1)an(un±an)m1±1an(1r+1n(m1))Ir,m1


Ir,m=urdu(an±un)m=ur+1n(m1)an(an±un)m1+1an(1r+1n(m1))Ir,m1


Ir,m=1ur(un±an)mdu=1(r1)ur1(un±an)m+mnr1Irn,m1


Ir,m=1ur(an±un)mdu=1(r1)ur1(an±un)m±mnr1Irn,m1


Ir,m=ur(un±an)mdu=1mn+r+1ur+1(un±an)m±mnanmn+r+1Ir,m1


Ir,m=ur(an±un)mdu=1mn+r+1ur+1(an±un)m+mnanmn+r+1Ir,m1


Ir,m=ur(un±an)mdu=1mn+r+1urn+1(un±an)m+1rn+1mn+r+1anIrn,m


Ir,m=ur(an±un)mdu=±1mn+r+1urn+1(an±un)m+1rn+1mn+r+1anIrn,m

Fórmulas de reducción para integrales trigonométricas

Directas

In=sennudu=1nsenn1ucosu+n1nIn2


In=cosnudu=1ncosn1usenu+n1nIn2
In=secnudu=1n1secn2utanu+n2n1In2


In=cscnudu=1n1cscn2ucotu+n2n1In2


In=tannudu=1n1tann1uIn2


In=cotnudu=1n1cotn1uIn2


Im,n=senmucosnudu=1m+nsenm+1ucosn1u+n1m+nIm,n2


Im,n=senmucosnudu=1m+nsenm1ucosn+1u+m1m+nIm2,n


Im,n=senmucosnudu=senm1u(n1)cosn1um1n1Im2,n2


Im,n=senmucosnudu=senm+1u(n1)cosn1umn+2n1Im,n2


Im,n=senmucosnudu=senm1u(mn)cosn1u+m1m2Im2,n


Im,n=cosmusennudu=cosm1u(n1)senn1um1n1Im2,n2


Im,n=cosmusennudu=cosm+1u(n1)senn1umn+2n1Im,n2


Im,n=cosmusennudu=cosm1u(mn)senn1u+m1m2Im2,n


In=sennucosudu=1(n1)senn1u+In2


In=cosnusenudu=1(n1)cosn1u+In2


Im,n=dusenmucosnu=1(n1)senm1ucosn1u+m+n2n1Im,n2


Im,n=dusenmucosnu=1(m1)senm1ucosn1u+m+n2m1Im2,n


In=dusennucosu=1(n1)senn1u+In2


In=dusenucosnu=1(n1)cosn1u+In2


In=cosnucosnudu=12nsennucosnu+12In1


In=sennucosnudu=12ncosnucosnu+12In1


In=cosnusennudu=12nsennusennu12sen(n1)usenn1udu


In=sennusennudu=12ncosnusennu+12cos(n1)usenn1udu


Im,n=cosmucosnudu=1m+nsenmucosnu+nm+nIm1,n1


Im,n=senmucosnudu=1m+ncosmucosnu+nm+nIm1,n1


Im,n=cosmusennudu=1m+nsenmusennunm+nsen(m1)usenn1udu


Im,n=senmusennudu=1m+ncosmusennu+nm+ncos(m1)usenn1udu


In=cosnucosnudu=sen(n1)u(n1)cosn1u+2In1


In=sennucosnudu=cos(n1)u(n1)cosn1u+2In1


In=sennusennudu=sen(n1)u(n1)senn1u+2cos(n1)usenn1udu


In=cosnusennudu=cos(n1)u(n1)senn1u2sen(n1)usenn1udu


Im,n=cosmucosnudu=sen(m1)u(n1)cosn1u+m+n2n1Im1,n1


Im,n=senmucosnudu=cos(m1)u(n1)cosn1u+m+n2n1Im1,n1


Im,n=senmusennudu=sen(m1)u(n1)senn1u+m+n2n1cos(m1)usenn1udu


Im,n=cosmusennudu=cos(m1)u(n1)senn1um+n2n1sen(m1)usenn1udu


In=(senu±cosu)ndu=1n(cosusenu)(senu±cosu)n1+2n1nIn2


In=(cosu±senu)ndu=1n(senucosu)(cosu±senu)n1+2n1nIn2


In=du(senu±cosu)n=cosusenu2(n1)(senu±cosu)n1+n22(n1)In2


In=du(cosu±senu)n=senucosu2(n1)(cosu±senu)n1+n22(n1)In2


In=(asenu+bcosu)ndu=1n(acosubsenu)(asenu+bcosu)n1+n1n(a2+b2)In2


In=du(asenu+bcosu)n=acosubsenu(n1)(a2+b2)(asenu+bcosu)n1+n2(n1)(a2+b2)In2


In=unsenaudu=1auncosau+naun1cosaudu


In=uncosaudu=1aunsenaunaun1senaudu


In=1unsenaudu=1(n1)un1senau+an11un1cosaudu


In=1uncosaudu=1(n1)un1cosauan11un1senaudu


In=usennaudu=1a2n2(senaunaucosau)senn1au+n1nIn2


In=ucosnaudu=1a2n2(cosaunausenau)cosn1au+n1nIn2


In=usecnaudu=u(n1)asecn2autanau1(n1)(n2)a2secn2au+n2n1In2


In=ucscnaudu=u(n1)acscn2aucotau1(n1)(n2)a2cscn2au+n2n1In2

Inversas

In=arcsinnudu=(uarcsinu+n1u2)(arcsinu)n1n(n1)In2


In=arccosnudu=(uarccosun1u2)(arccosu)n1n(n1)In2


In=duarcsinnu=uarcsinu(n2)1x2(n1)(n2)(arcsinu)n11(n1)(n2)In2


In=duarccosnu=uarccosu+(n2)1x2(n1)(n2)(arccosu)n11(n1)(n2)In2


In=unarcsinudu=1n+1un+1arcsinu1n+1un+1du1u2


In=unarccosudu=1n+1un+1arccosu+1n+1un+1du1u2


In=unarcsinudu=1n+1un(uarcsinu+1u2)nn+1un11u2du


In=unarccosudu=1n+1un(uarccosu1u2)+nn+1un11u2du


In=1unarcsinudu=1(n1)un1arcsinu+1n1duun11u2


In=1unarccosudu=1(n1)un1arccosu1n1duun11u2


In=unarctanudu=1n+1un+1arctanu1n+1un+1du1+u2


In=unarccotudu=1n+1un+1arccotu+1n+1un+1du1+u2


In=1unarctanudu=1(n1)un1arctanu+1n1duun1(1+u2)


In=1unarccotudu=1(n1)un1arccotu1n1duun1(1+u2)

Fórmulas de reducción para integrales exponenciales

In=uneaudu=1auneaunaIn1


In=1uneaudu=1(n1)un1eauan1In1


In=uneau2du=12aun1eau2n12aIn2


In=eausennbudu=1a2+b2n2eau(asenbunbcosbu)senn1bu+n(n1)b2a2+b2n2In2


In=eaucosnbudu=1a2+b2n2eau(acosbunbsenbu)cosn1bu+n(n1)b2a2+b2n2In2


In=xnexdx=ex[k=0ndk(xn)dxk];d0(xn)dx0=xn;dn(xn)dxn=n!

Fórmulas de reducción para integrales logarítmicas

In=lnnudu=ulnnunIn1


In=dulnnu=u(n1)lnn1u+1n1In1


In=umlnnudu=1m+1um+1lnnunm+1In1


In=1umlnnudu=1(m1)um1lnnu+nm1In1


In=umlnnudu=um+1(n1)lnn1u+m+1n1In1


In=duumlnnu=1(n1)um1lnn1um1n1In1

Fórmulas de reducción para integrales hiperbólicas

In=sinhnudu=1nsinhn1ucoshun1nIn2


In=coshnudu=1ncoshn1usinhu+n1nIn2


In=sechnudu=1n1sechn2utanhu+n2n1In2


In=cschnudu=1n1cschn2ucothun2n1In2


In=tanhnudu=1n1tanhn1u+In2


In=cothnudu=1n1cothn1u+In2


Im,n=sinhmucoshnudu=1m+nsinhm1ucoshn+1um1m+nIm2,n


Im,n=sinhmucoshnudu=1m+nsinhm+1ucoshn1u+n1m+nIm,n2


Im,n=sinhmucoshnudu=sinhm1u(n1)coshn1u+m1n1Im2,n2


Im,n=coshmusinhnudu=coshm1u(n1)sinhn1u+m1n1Im2,n2


In=unsinhaudu=1auncoshaunaun1coshaudu


In=uncoshaudu=1aunsinhaunaun1sinhaudu


Plantilla:Control de autoridades