Conjetura de Fermat–Catalan

De testwiki
Ir a la navegación Ir a la búsqueda

En teoría de números, la conjetura de Fermat–Catalan combina ideas del último teorema de Fermat y de la conjetura de Catalan, de ahí el nombre. La conjetura postula que la ecuación

Plantilla:Ecuación

tiene un número finito de soluciones (a,b,c,m,n,k); aquí a, b, c son números enteros positivos coprimos y m, n, k son enteros positivos que satisfacen

Plantilla:Ecuación

A fecha de 2008, se conocen las siguientes soluciones de Plantilla:Eqnref:[1]

1m+23=32
25+72=34
132+73=29
27+173=712
35+114=1222
338+15490342=156133
14143+22134592=657
92623+153122832=1137
177+762713=210639282
438+962223=300429072

La primera de ellas (1m+23=32) es la única solución donde una de las variables a, b o c es 1; esta es la conjetura de Catalan, demostrada en 2002 por Preda Mihăilescu. Técnicamente, este caso produce un número infinito de soluciones de Plantilla:Eqnref (puesto que se puede escoger cualquier m para m>6), pero a los efectos de enunciado de la conjetura de Fermat-Catalan se contabilizarán todas esas soluciones como una sola.

Se conoce, mediante el teorema de Faltings, que para cualquier elección fijada de enteros positivos m, n y k que satisfacen Plantilla:Eqnref, existe únicamente un número finito de tuplas de números enteros coprimos (abc) que resuelven Plantilla:Eqnref, pero claro, la conjetura de Fermat–Catalan completa es una afirmación mucho más fuerte.

La conjetura abc implica la conjetura de Fermat–Catalan.[1]

Referencias

Plantilla:Listaref

Plantilla:Control de autoridades