Cuarenta y uno

De testwiki
Ir a la navegación Ir a la búsqueda

Plantilla:Otros usos Plantilla:Ficha de número El cuarenta y uno (41) es el número natural que sigue al cuarenta y precede al cuarenta y dos.

Propiedades matemáticas

  • Es el Plantilla:Ord número primo, después del 37 y antes del 43, con el cual forma un par de números primos gemelos.
  • Es un número primo de Sophie Germain
  • Es un número primo de Newman-Shanks-Williams
  • Número primo fuerte
  • En el polinomio f(n)=n2+n+41, da primos si -1 < n < 40.[1] Luego f(0) = 41
  • El 41 es un número primo resultado de la suma de los seis primeros números primos (2+3+5+7+11+13).
  • Cabe esta suma de cuadrados perfectos: 402+92=412=1681, además 16, y 81 son cuadrados perfectos y todo el numeral 1681[2]
  • Se cumple la igualdad numérica 41=212202=441400
  • 41 como media aritmética que simplifica producto: 41 es media aritmética de 47 y 35; el producto 47×35 = (41+6)×(41-6)= 412-62= 1 845
  • 41 integra la sexta terna pitagórica primitiva: (9 ; 40; 41) si dichas ternas se ordenan por la longitud correspondiente de la hipotenusa.
  • 41 es un primo de Eisenstein, lo que dice que sus únicos divisores son sus asociados o las unidades del anillo de enteros de Eisenstein [Z(ω)]]
  • Es un número primo pitagórico
  • Dado que (76)×(7+6)=41, el número 41 no es primo en el anillo Z[6], por ser factorizable.
  • 6 es la raíz primitiva módulo 41[3]
  • Según un teorema de Fermat, que dice que un primo de la forma 4j+1 ( j entero) es una suma de dos cuadrados, resulta que 41 = 42 +52

.[4]

Química

Astronomía

Véase también

Referencias

Plantilla:Listaref

Plantilla:Control de autoridades

  1. I.S. Sominski: Método de inducción matemática Editorial Mir, Moscú 1985, pág. 8
  2. José Luis Mataix Plana (Ingeniero industrial): Mil problemas de aritmética y álgebra- Resueltos y explicados Primera parte Aritmética, Editorial Dossat, S. A., Madrid
  3. I. Vinogradov: Fundamentos de la teoría de los números. Editorial MIR, Moscú segunda edición s/f; traducción al español 1977 pág. 202
  4. E. P. Ozhígova: Qué es la teoría de números? Editorial URSS, Moscú 2004, pág.21