Distribución de Fréchet
Ir a la navegación
Ir a la búsqueda
Plantilla:Ficha de distribución de probabilidad
La distribución de Fréchet es un caso especial de la distribución de valores extremos generalizada. Su función de distribución es
donde α > 0 es el parámetro de forma. Puede generalizarse para incluir un parámetro de localización m y escala s > 0 quedando entonces de la forma
Recibe su nombre de Maurice Fréchet, que escribió un artículo relacionado con ella en 1927. También trabajaron con ella Fisher y Tippett en 1928 y Gumbel en 1958.
Aplicación

- En hidrología, se utiliza la distribución de Fréchet para analizar variables aleatorias como valores máximos de la precipitación y la descarga de ríos,[2] y además para describir épocas de sequía.[3]
- La imagen azul ilustra un ejemplo de ajuste de la distribución de Fréchet a lluvias máximas diarias ordenadas, mostrando también la franja de 90% de confianza, basada en la distribución binomial.
Las observaciones presentan los marcadores de posición, como parte del análisis de frecuencia acumulada.
Véase también
Referencias
Enlaces externos
- Bank of England working paper
- Plantilla:Enlace roto
- Wave Analysis for Fatigue and Oceanography
- Extreme value distributions: Theory and Applications, Kotz & Nadarajah Plantilla:Wayback
Publicaciones
- Fréchet, M., (1927). "Sur la loi de probabilité de l'écart maximum." Ann. Soc. Polon. Math. 6, 93.
- Fisher, R.A., Tippett, L.H.C., (1928). "Limiting forms of the frequency distribution of the largest and smallest member of a sample." Proc. Cambridge Philosophical Society 24:180-190.
- Gumbel, E.J. (1958). "Statistics of Extremes." Columbia University Press, New York.
Plantilla:Control de autoridades
- ↑ CumFreq software para adecuación de distribuciones de probabilidad [1]
- ↑ Plantilla:Cite book
- ↑ Plantilla:Cite journal