Divisor unitario

De testwiki
Ir a la navegación Ir a la búsqueda

En matemática, un número natural a es un divisor unitario de un número b si a es un divisor de b y si a y ba son coprimos, no teniendo un factor común diferente de 1. Así, 5 es un divisor unitario de 60, puesto que 5 y 605=12 tienen únicamente 1 como factor común, mientras que 6 es un divisor, pero no un divisor unitario de 60, dado que 6 y 606=10 tienen un factor común distinto de 1, que es 2. 1 es un divisor unitario de cualquier número natural.

Equivalentemente, un divisor a de b es un divisor unitario si y solo si todo factor primo de a tiene la misma multiplicidad en a como esta la tiene en b.

La función suma de divisores unitarios se denota mediante la letra minúscula griega sigma, así: σ*(n). La suma de las k-ésimas potencias de los divisores unitarios se denota por σ*k(n):

σk*(n)=dnmcd(d,n/d)=1dk.

Se denomina número perfecto unitario a la suma de todos los divisorios unitarios propios de un número natural compuesto.[1]


Propiedades

El número de divisores unitarios de un número n es 2k, donde k es el número de factores primos distintos de n. La suma de divisores unitarios de n es impar si n es una potencia de 2 (incluyendo 1), y par de cualquier otra forma.

Ambas, cantidad y suma de divisores unitarios de n son funciones multiplicativas de n que no son completamente multiplicativas. La función generadora de Dirichlet es

ζ(s)ζ(sk)ζ(2sk)=n1σk*(n)ns.

Divisores unitarios impares

La suma de las k-ésimas potencias de los divisores unitarios impares es

σk(o)*(n)=dnd1(mod2)mcd(d,n/d)=1dk.

Esta también es multiplicativa, con una función generadora de Dirichlet

ζ(s)ζ(sk)(12ks)ζ(2sk)(12k2s)=n1σk(o)*(n)ns.

Divisores bi-unitarios

Un divisor d de n es un divisor bi-unitario si el máximo común divisor de d y n/d es 1. El número de divisores bi-unitarios de n es una función multiplicativa de n con orden medio Alogx, donde[2]

A=p(1p1p2(p+1)) .

Un número perfecto bi-unitario es aquel igual a la suma de sus divisores propios bi-unitarios. Los únicos números así son 6, 60 y 90.[3]

Referencias y notas

Plantilla:Listaref

Enlaces externos

Sucesiones OEIS

Plantilla:OEIS2C es σ0(n)   Plantilla:OEIS2C es σ1(n)   Plantilla:OEIS2C a Plantilla:OEIS2C son σ2(n) a σ8(n)   Plantilla:OEIS2C es σ(o)*0(n)   Plantilla:OEIS2C es σ(o)*1(n)  

Plantilla:Control de autoridades

  1. Para que un numeral natural tenga divisor unitario tiene que ser compuesto
  2. Ivić (1985) p.395
  3. Sandor et al (2006) p.115