Ecuación de Kardar–Parisi–Zhang

De testwiki
Ir a la navegación Ir a la búsqueda

La ecuación KPZ (por las iniciales de sus creadores, Mehran Kardar, Giorgio Parisi y Vi-Cheng Zhang) es una ecuación diferencial estocástica en derivadas parciales y no lineal. Describe la variación temporal del grosor ϕ(x,t) de una lámina. Es un buen modelo de crecimiento de superficies. Viene dada por la expresión:

Plantilla:Ecuación

donde η(x,t) es un ruido gaussiano blanco cuyos primer y segundo momentos están dados por

Plantilla:Ecuación y ν, λ y D son parámetros del modelo; d es la dimensión de la lámina y es un concepto bastante importante en la resolución de la ecuación y afecta al tipo de solución. En concreto:

  1. si d<2 la ecuación tiene una sola fase "áspera" en la que las fluctuaciones de ϕ divergen algebraicamente con el tamaño del sistema, desestabilizando cualquier comportamiento estudiado;
  2. si d>2 la ecuación presenta una "fase fluida" —un acoplamiento débil— para λ lo suficientemente pequeña. En esta fase, las fluctuaciones son pequeñas y el comportamiento es coherente globalmente. El estudio de las correlaciones espaciales y temporales arroja que:

Plantilla:Ecuación

Referencias

Plantilla:Listaref

Plantilla:Control de autoridades