Grado de curvatura

De testwiki
Ir a la navegación Ir a la búsqueda
Aspecto de una serie de arcos de longitud dada para distintos grados de curvatura. En este caso, la longitud del arco (que sirve para calcular los radios asociados) es de 20 unidades

El grado de curvatura (o también el grado de una curva) es una medida de la curvatura de un arco circular, utilizada en ingeniería civil para facilitar el replanteo topográfico de una curva circular cuyas coordenadas se han calculado previamente.

Definición

El grado de una curva se define como el ángulo central correspondiente a los extremos de un arco o cuerda de longitud predeterminada.[1] Esta longitud varía en función del área práctica en la que se esté trabajando. Este ángulo también representa el cambio de orientación que se produce a medida que se recorre hacia adelante la longitud de arco correspondiente sobre la curva.

En trabajos de topografía de obras lineales (especialmente en Estados Unidos), es habitual considerar una longitud de arco de 100Plantilla:Esdunidades, de forma que:

DC=(A180π)r=(100180π)r=5729.58/r

En consecuencia, en este caso la expresión es específica para un valor de arco de cien unidades, es decir, A=100.

También es importante recordar que si DC va a utilizarse como entrada de otra fórmula, deben tenerse en cuenta las unidades que se están especificando para su cálculo (véase por ejemplo resistencia en curva (ferrocarril), donde el radio que permite determinar correctamente DC debe expresarse en pies).

Uso

El radio de curvatura permite determinar con qué intensidad gira un eje que se está replanteando en relación con la longitud del arco que se recorre. Cuando se quiere trazar topográficamente sobre el terreno el arco de una curva circular de radio relativamente pequeño (generalmente, por debajo de unos 250Plantilla:Esdm), casi siempre es posible localizar el centro del círculo y utilizarlo para obtener los puntos de la curva. Pero si el radio es más grande (por ejemplo, superior a un kilómetro), el centro queda muy lejos de los puntos de la curva, y el grado de curvatura es una medida más práctica para diseñar y situar localmente los puntos de una curva en trabajos a gran escala, como los habituales en el trazado de carreteras y de ferrocarriles. Mediante este método, los puntos de una curva circular regularmente espaciados se pueden materializar fácilmente con la ayuda de un teodolito y de una cadena, cinta o cuerda de una longitud predeterminada.

En una curva de n grados, su tangente (al igual que su radio) gira nPlantilla:Esdgrados al recorrer una longitud estándar de arco o de cuerda. La distancia habitual entre puntos consecutivos de replanteo de las obras viales en Europa es de 20Plantilla:Esdmetros (en América del Norte es de 100Plantilla:Esdpies), lo que se hace extensivo a la longitud del arco entre puntos consecutivos cuando se traza una curva circular.[2] Tradicionalmente también se utilizaron longitudes fijas de cuerda, tanto en ferrocarriles como en carreteras. También se usan otras longitudes, como 30Plantilla:Esdm o 100Plantilla:Esdm, o longitudes más corta para curvas más cerradas. Cuando el grado de curvatura se basa en 100Plantilla:Esdunidades de longitud de arco, la conversión entre el grado de curvatura y el radio es Plantilla:Math, donde Plantilla:Math es grado y Plantilla:Math es el radio.

Como ejemplo, una curva con una longitud de arco de 600Plantilla:Esdunidades que tiene un barrido total de 6Plantilla:Esdgrados es una curva de 1Plantilla:Esdgrado: por cada 100Plantilla:Esdunidades de arco, el rumbo cambia en 1Plantilla:Esdgrado. El radio de tal curva es 5729,57795Plantilla:Esdunidades. Si se utiliza la cuerda en lugar del arco en la definición, cada cuerda de 100Plantilla:Esdunidades de longitud barrerá 1Plantilla:Esdgrado con un radio de 5729,651Plantilla:Esdunidades, y la cuerda de toda la curva será ligeramente más corta que 600Plantilla:Esdunidades.

Dado que las rutas ferroviarias tienen radios muy grandes, tradicionalmente se utilizaba el sistema de longitud de cuerda, ya que la diferencia con respecto a utilizar el arco es muy pequeña, lo que facilitaba el trabajo de campo antes de que se generalizara el uso de calculadoras electrónicas.

Cada uno de los puntos separado 20Plantilla:Esdm del anterior (100Plantilla:Esdpies habitualmente en los países que utilizan unidades anglosajonas) se denomina una estación, y se usa para definir la longitud a lo largo de una obra lineal, como un ferrocarril o una carretera. La notación habitual es halar de "PK" (punto kilométrico), indicando los kilómetros separados de los metros separados por un signo "+" (por ejemplo, el PKPlantilla:Esd3+220, sirve para indicar un punto de una obra lineal que se encuentra a 3Plantilla:Esdkm y 220Plantilla:Esdm del origen arbitrario de la infraestructura).

Fórmulas para determinar el radio de curvatura

El grado de curvatura se puede convertir en radio de curvatura mediante las siguientes fórmulas:

Diagrama que muestra diferentes partes de la curva utilizadas en las fórmulas

Fórmula según la longitud del arco

r=180AπDC

donde A es la longitud del arco, r es el radio de curvatura y DC es el grado de curvatura

Fórmula según la longitud de la cuerda

r=C2sin(DC2)

dónde C es la longitud de la cuerda, r es el radio de curvatura y DC es el grado de curvatura

Fórmula para determinar el grado de curvatura

DC=5729.58/r

donde DC es grado de curvatura expresado en grados sexagesimales por unidad de longitud, y r es el radio de la curva en la misma unidad.

Véase también

Plantilla:Lista de columnas

Referencias

Plantilla:Listaref

Enlaces externos

Plantilla:Control de autoridades

  1. Wolf and Ghilani. Elementary Surveying, 11th ed., 2006
  2. Davis, Foote, and Kelly. Surveying Theory and Practice, 1966