Grupo unitario

De testwiki
Ir a la navegación Ir a la búsqueda

En matemáticas, el grupo unitario UK(n) de grado n, es el grupo de matrices unitarias (de n x n) cuyas componentes pertenecen al cuerpo 𝕂. Estas matrices, con la operación de grupo dada por la multiplicación de matrices. (Usualmente el cuerpo 𝕂 se toma como el conjunto de los reales o el cuerpo de los números complejos .)

El grupo unitario, denotado U𝕂 o U(n, 𝕂), es un subgrupo del grupo general lineal GL(n, 𝕂)

Ejemplos

En el caso simple n = 1, el grupo U(1) es el círculo unidad en el plano complejo, con su multiplicación. Todos los grupos unitarios complejos contienen copias de este grupo.

Si el cuerpo 𝕂 es , los números reales, entonces el grupo unitario coincide con el grupo ortogonal O(n, ). Si 𝕂 es , los números complejos, se escribe generalmente U(n) para el grupo unitario de grado n.

El grupo unitario U(n) es un grupo de Lie real de dimensión n². El álgebra de Lie de U(n) consiste en las matrices anti-simétricas complejas n por n, con el corchete de Lie dado por el conmutador.

Subgrupos

Generalización

El concepto de grupo unitario puede extenderse a espacios vectoriales de dimensión infinita, como los espacios de Hilbert usados en mecánica cuántica. Dado un operador autoadjunto A^, como el que representa una magnitud física puede definirse un grupo de operadores unitarios mediante:

U^A(s)=exp(iA^s)s


Los dos ejemplos más notorios son el grupo unitario de evolución temporal, generado a partir del operador hamiltoniano y el grupo de rotaciones alrededor de un eje, generado por el momento angular:

U^(t)=exp(iH^t/)
R^(θ)=exp(iL^eje/)θ[0,2π)

Véase también

Plantilla:Control de autoridades