Identidades de Cassini y Catalan
La identidad de Cassini y la identidad de Catalan son relaciones matemáticas ligadas con los números de la sucesión de Fibonacci. La primera es un caso especial de la segunda, y afirma que para cada número n-ésimo de la sucesión de Fibonacci, se cumple que:[1]
La identidad de Catalan generaliza este principio:
La identidad de Vajda también supone una generalización de la primera:
Historia
La fórmula de Cassini fue descubierta en 1680 por Jean-Dominique Cassini, entonces director del Observatorio de París, siendo también demostrada de forma independiente por Robert Simson (1753). Eugène Charles Catalan encontró la identidad que lleva su nombre en 1879.
Prueba mediante cálculo matricial
Una prueba rápida de la identidad de Cassini se puede dar Plantilla:Harv al reconocer el lado izquierdo de la ecuación como el determinante de una matriz 2×2 de números de Fibonacci. El resultado es casi inmediato cuando se considera que la matriz es la potencia Plantilla:Math de una matriz con determinante de valor −1:
Demostración por inducción
Sea
- Caso base: ¿p(1)?
- Paso inductivo: Dado ¿?
Por definición de la sucesión de Fibonacci, sabemos que para y .En el último caso implica , así que está definida).
Entonces:
como se quería demostrar.