Operad

De testwiki
Ir a la navegación Ir a la búsqueda
Injerto de elementos en una operada (matemáticas)

En matemáticas, se llama operad a una estructura construida a partir de operaciones abstractas, cada una de las cuales tiene un número finito de entradas (argumentos) y una sola salida como resultado, así como unas reglas sobre como se deben componer esas operaciones. Dado un operad O, se define un álgebra sobre O como un conjunto dotado de operaciones en sus elementos de forma que se comportan como las operaciones abstractas de O. Por ejemplo, existe el llamado operad de Lie L tal que las álgebras sobre L son precisamente las álgebras de Lie. De esta manera, el operad L es una forma de abstraer en un objeto matemático las operaciones que comparten entre sí todas las álgebras de Lie. El operad de relaciona con sus álgebras de manera similar a como un grupo se relaciona con las representaciones del grupo.

La teoría de operads tiene su origen en la topología algebraica, donde fueron introducidas en 1969 por J. Michael Boardman y Rainer M. Vogt con el fin de caracterizar ciertos espacios de lazos.[1] y por J. Peter Mayin 1970.[2] May creó la palabra "operad" como un acrónimo de "operaciones" y "mónada", a lo que se une también el hecho de que su madre era cantante de ópera.[3]

El interés por la teoría de operads recobró actualidad a finales del Plantilla:Siglo a partir de que, basándose en las primeras ideas de Maxim Kontsevich, Victor Ginzburg y Mikhail Kapranov descubrieron que algunos fenómenos de dualidad en la teoría de la homotopía racional podían explicarse utilizando la llamada dualidad de operads de Koszul.[4][5] Desde entonces, las operaciones han encontrado muchas aplicaciones como, por ejemplo, en la cuantización por deformación de las variedades de Poisson, en la conjetura de Deligne, o la homología de grafos dentro de los trabajos de Maxim Kontsevich y Thomas Willwacher .

Referencias de ampliación

Citas

Referencias

Plantilla:Listaref

Plantilla:Control de autoridades