Recta de Simson

La recta de Simson en relación con un triángulo es cualquier recta que une los pies de las perpendiculares a los lados del triángulo, trazadas desde un punto de la circunferencia circunscrita. Estas rectas reciben su nombre en honor a Robert Simson (1687-1768) aunque los historiadores de matemáticas no han encontrado evidencia de su autoría. Dado que la primera publicación conocida en la que aparecen estas rectas, fechada en 1797 y perteneciente a William Wallace, en ocasiones se denomina a estas rectas como rectas de Wallace-Simson.[1]
Teorema de Wallace-Simson

En general, si se trazan perpendiculares desde un punto cualquiera del plano (exterior o interior al triángulo), los pies de dichas perpendiculares no son colineales sino que forman un triángulo denominado triángulo pedal. La colinealidad de los tres pies de las perpendiculares es característica de los puntos de la circunferencia circunscrita: Plantilla:Teorema
Es decir, no sólo los pies de las perpendiculares trazados desde un punto en la circunferencia circunscrita son colineales, sino que estos puntos son los únicos que poseen dicha propiedad.
Propiedades

- La línea de Simson de un vértice del triángulo es la altura del triángulo trazada desde ese mismo vértice.
- La línea de Simson de un punto diametralmente opuesto a un vértice es el lado formado por los otros dos vértices.
- El ángulo formado entre las rectas de Simson de dos puntos P, Q es exactamente igual a la mitad del ángulo central del arco PQ.
- La línea de Simson de un punto P pasa por el punto medio del segmento PH, donde H representa el ortocentro del triángulo. Además, dicho punto de intersección está sobre la circunferencia de los nueve puntos.
- La envolvente de todas las líneas de Simson es un deltoide denominado deltoide de Steiner.
Bibliografía
A.I. Fetísov. Acerca de la demostración en geometría, Editorial Mir Moscú (1980).[2]
Véase también
Referencias
Enlaces externos
- Recta de Simson en Interactive Geometry (el, en, fr)
Plantilla:Control de autoridades
- ↑ H.S.M. Coxeter, S.L. Greitzer. Retorno a la Geometría. Serie «La tortuga de Aquiles», No.1, otoño 1993. Proyecto Euler. Traducción al español de Geometry Revisited, editado por la Mathematical Association of America.
- ↑ Da una demostración de la proposición sobre una circunferencia circunscrita a un triángulo y la colinealidad de los pies de perpendiculares trazadas de un punto circunferencal a los tres lados del triángulo.