Teorema de Ptolomeo

De testwiki
Ir a la navegación Ir a la búsqueda
Un cuadrilátero cumple con el Teorema de Ptolomeo si y solamente si es cíclico.

El teorema de Ptolomeo es una relación en geometría euclidiana entre los cuatro lados y las dos diagonales de un cuadrilátero cíclico. El teorema recibe su nombre del astrónomo y matemático griego Claudio Ptolomeo.

Si un cuadrilátero está dado por sus cuatro vértices A, B, C, D, el teorema afirma que:

ACBD=ABCD+BCAD

Esta relación puede ser expresada de manera verbal de la siguiente forma:

Plantilla:Teorema

Demostraciones

Demostración geométrica

Demostración del teorema de Ptolomeo
Demostración del teorema de Ptolomeo
  1. Sea ABCD un cuadrilátero cíclico.
  2. Note que en el segmento BC, ángulos inscritos ∠BAC = ∠BDC, y en AB, ∠ADB = ∠ACB.
  3. Ahora, por ángulos comunes △ABK es semejante a △DBC, y △ABD ∼ △KBC
  4. Por lo tanto AK/AB = CD/BD, y CK/BC = DA/BD,
    1. Por lo tanto AK·BD = AB·CD, y CK·BD = BC·DA;
    2. Lo que implica AK·BD + CK·BD = AB·CD +BC·DA
    3. Es decir, (AK+CK)·BD = AB·CD + BC·DA;
    4. Pero AK+CK = AC, por lo tanto AC·BD = AB·CD + BC·DA; como se quería demostrar.

Note que la demostración es válida solo para cuadriláteros concíclicos simples. Si el cuadrilátero es complejo entonces K se encontrará fuera del segmento AC, y por lo tanto AK-CK=±AC, tal como se esperaba.

Existe una generalización de este teorema llamado el teorema de Casey, que involucra a cuatro circunferencias no secantes y tangentes interiores a una quinta.

El teorema de Ptolomeo se puede demostrar con métodos de inversión geométrica con respecto a cualquier vértice de un cuadrilátero.[1]


Ejemplo

La razón dorada se obtiene de la aplicación del teorema de Ptolomeo

Considérese un pentágono regular y la circunferencia circunscrita al mismo. En el cuadrilátero ABCD las diagonales son iguales al lado AD. El teorema de Ptolomeo arroja en este caso,

b2=ab+a2. 

Dividiendo entre a2 se tiene

b2a2=1+ba. 

Denotando con φ la razón b/a se obtiene φ2=1+φ, ecuación que coinicide con la definición del número áureo.

φ=1+52.

Referencias

Plantilla:Listaref

Enlaces externos

Plantilla:Control de autoridades

  1. Adam Puig Curso de Geometría Métrica, Tomo 1 ISBN 84-85731-03-4.