Vector de onda
El vector de onda es un vector que apunta en la dirección de propagación de la onda en cuestión y cuya magnitud es el número de onda. Su expresión en matemática es: Plantilla:Ecuación donde es la dirección de la propagación de la onda. De este modo, para una onda genérica tenemos que: Plantilla:Ecuación
Aplicaciones
Transversalidad de las ondas electromagnéticas planas
El formalismo mediante el vector de onda permite ver rápidamente que las ondas electromagnéticas planas son trasversales, es decir, la oscilación del campo eléctrico y magnético es perpedincular a la dirección de propagación de la onda y perpendiculares entre sí.
Para demostrar esto consideremos, sin pérdida de generalidad, una onda electromagnética plana de la forma: Plantilla:Ecuación Suponiendo una región del espacio sin densidad de carga , la ley de Gauss para la divergencia del campo eléctrico nos lleva a que: Plantilla:Ecuación De donde obtenemos la perpendicularidad entre el campo eléctrico y la dirección de propagación: Plantilla:Ecuación Usando ahora la ley de Faraday para el rotacional del campo eléctrico tenemos: Plantilla:Ecuación De Plantilla:Eqnref, por las propiedades del producto vectorial, se deduce: Plantilla:Ecuación Por tanto de las expresiones Plantilla:Eqnref y Plantilla:Eqnref puede concluirse que el campo eléctrico es perpendicular al vector de onda, y por tanto a la dirección de propagación, y que el campo magnético es perpendicular tanto a la dirección de propagación como al campo eléctrico, formando los vectores forman un triedro que en cada punto del espacio constituye una base vectorial.