Extensión de Galois

De testwiki
Ir a la navegación Ir a la búsqueda

En álgebra abstracta, una extensión de cuerpo algebraica E/K se dice extensión de Galois (o extensión galoisiana) si es una extensión normal y separable. En este caso, se puede considerar el grupo de Galois de la extensión y sobre él es válida la tesis del Teorema Fundamental de la Teoría de Galois.

Definición

Sea la extensión E sobre un cuerpo base K (E/K).

  • Por ser normal, E es el cuerpo de descomposición de un polinomio con coeficientes en K; o, equivalentemente, las K-inmersiones de E en un cuerpo algebraicamente cerrado que contenga a K son automorfismos de E sobre K.
  • Por ser separable, dicho polinomio descompone completamente en raíces simples.

Grupo de Galois

Sobre una extensión de Galois E/K, se define el grupo de Galois Gal(E/K) como el grupo de los automorfismos de E sobre K. Por ser E/K normal, toda K-inmersión entre E y Ω es un automorfismo y se tiene:

Gal(E/K)=AutK(E)={σ:EK¯:σ K-inmersio´n}

siendo el cardinal del grupo |Gal(E/K)|=|AutK(E)|=[E:K].

Enlaces externos

Plantilla:Control de autoridades