Fórmula de Liouville

De testwiki
Ir a la navegación Ir a la búsqueda

En matemáticas, la fórmula de Liouville, también conocida como fórmula de Abel-Liouville, es una identidad que expresa el determinante de una matriz cuadrada que soluciona un sistema de ecuaciones diferenciales lineales homogéneas de primer orden en función de la suma de los coeficientes de la diagonal del sistema. La fórmula debe su nombre al matemático francés Joseph Liouville.

Enunciado

Sea Φ(t) una matriz cuadrada de dimensión n x n que verifica la siguiente ecuación diferencial homogénea de primer orden:

Φ(t)=A(t)Φ(t),tI,

donde I es un intervalo de la recta real y A(t) es una matriz cuadrada de dimensión n x n con coeficientes reales o complejos.

Entonces, si la traza de A(t) es integrable en I, se cumple la siguiente relación con el determinante de Φ(t):

detΦ(t)=detΦ(t0)exp(t0ttrA(s)ds),t,t0I.

Demostración

Denotamos aij y ϕij como los elementos individuales de las matrices A(t) y Φ(t) respectivamente. Por brevedad se omite la variable t en estas matrices y sus coeficientes.

Por la fórmula de Leibniz para el cálculo de determinantes se cumple que Plantilla:NumBlk

En el i-ésimo sumando se aplica una combinación lineal sobre su i-ésima fila del resto de sus filas, lo que no altera su valor. Usando la ecuación diferencial de la hipótesis, que en términos de aij y ϕij se escribe

ϕ'ik=j=1naijϕjk,i,k{1,,n},

se obtiene la expresión del i-ésimo término de la suma anterior en función del determinante de Φ:

det(ϕ11ϕ12ϕ1nϕ'i1ϕ'i2ϕ'inϕn1ϕn2ϕnn)=det(ϕ11ϕ12ϕ1nϕ'i1j=1jinaijϕj1ϕ'i2j=1jinaijϕj2ϕ'inj=1jinaijϕjnϕn1ϕn2ϕnn)=det(ϕ11ϕ12ϕ1naiiϕi1aiiϕi2aiiϕinϕn1ϕn2ϕnn)=aiidetΦ. Usando esto en la fórmula (Plantilla:EquationNote), se obtiene la siguiente ecuación diferencial para el determinante de Φ:

(detΦ)=i=1naiidetΦ=trAdetΦ.

Se trata de una ecuación diferencial ordinaria de primer orden separable, cuya solución es

detΦ(t)=detΦ(t0)exp(t0ttrA(s)ds),t,t0I.

Véase también

Referencias

Plantilla:Control de autoridades