Icosidodecadodecaedro romo
En geometría, el icosidodecadodecaedro romo es un poliedro uniforme estrellado, indexado como U46. Tiene 104 caras (80 triángulos, 12 pentágonos y 12 pentagramas), 180 aristas y 60 vértices.[1] Como su nombre indica, pertenece a la familia de los poliedros romos.
La circunferencia circunscrita del icosidodecadodecaedro romo con longitud de arista unidad es:
donde ρ es el número plástico (la única raíz real de la ecuación Plantilla:Nowrap).[2]
Coordenadas cartesianas
Las coordenadas cartesianas de los vértices de un icosidodecadodecaedro romo son todas las permutaciones pares (con un número par de signos más) de:
- (±2a, ±2c, ±2b),
- (±(a+b/t+c), ±(-en+b+c/t), ±(a/t+bt-c)),
- (±(-a/t+bt+c), ±(-a+b/t-ct), ±(at+b-c/t)),
- (±(-α/τ+βτ-γ), ±(α-β/τ-γτ), ±(ατ+β+γ/τ)) y
- (±(a+b/t-ct), ±(at-b+c/t), ±(a/t+bt+c))
donde τ = (1+Plantilla:Raíz)/2 es el número áureo y ρ es el número plástico (la única solución real de ρ3=ρ+1)
- α = ρ+1 = ρ3;
- β = τ2ρ4+τ; y
- γ = ρ2+tr.
Tomando las permutaciones impares de las coordenadas anteriores (con un número impar de signos más) se obtiene otra forma, enantiomorfa de la primera.[3] Plantilla:Clear
Poliedros relacionados
Mediano hexecontaedro hexagonal
Plantilla:Ficha de poliedro Archivo:Medial hexagonal hexecontahedron.stl
El mediano hexecontaedro hexagonal es un poliedro no convexo isoedral. Es el dual del icosidodecadodecaedro romo, un poliedro uniforme estrellado.Plantilla:Clear