Norma matricial

De testwiki
Ir a la navegación Ir a la búsqueda

En matemáticas, una norma matricial es una extensión de la noción natural de norma vectorial a las matrices.

Definición

En adelante, K denotará el cuerpo de los números reales o complejos y Km×n denotará el espacio vectorial que contienen todas las matrices con m filas y n columnas con entradas en K.

Una norma matricial es una norma vectorial en Km×n, o sea, si A denota la norma de la matriz A, entonces,

  • A>0 si AO y A=0 si y solo si A=O
  • αA=|α|A para todo α en K y todas las matrices A en Km×n
  • A+BA+B para todas las matrices A y B en Km×n.

Adicionalmente, en el caso de matrices cuadradas (o sea, m = n), algunas (pero no todas) normas matriciales satisfacen la siguiente condición, la cual se relacióna con el hecho de que las matrices son más que simples vectores:

  • ABAB para todas las matrices A y B en Kn×n.

Una norma matricial que satisface esta propiedad adicional es llamada norma sub-multiplicativa (en algunos libros, la terminología norma matricial se usa solo para normas que son sub-multiplicativas). El conjunto de todas las matrices n-por-n, siendo normas sub-multiplicativas, es un ejemplo de un álgebra de Banach.

Norma inducida

Si se tienen norma vectoriales en Km y Kn se pueden definir la norma inducida correspondiente o el operador norma en el espacio de matrices m×n de la siguiente manera:

A=sup{Ax:xKn con x=1}=sup{Axx:xKn con x0}.

Donde sup denota el elemento supremo e ínfimo. Hay diferentes normas que se denotan p-normas y usualmente se denotan por Ap.

Si m = n y uno usa la misma norma en el dominio y el rango, entonces el operador norma inducido es una norma matricial sub-multiplicativa.

El operador norma correspondiente a la norma p para vectores es:

Ap=max\limits x0Axpxp.

En el caso de p=1 y p=, las normas se pueden calcular como:

A1=max\limits 1jni=1m|aij|, que es simplemente la máxima suma absoluta de las columnas de la matriz.

Demostración:

Sea

α=max\limits 1jni=1m|aij|

.

Tenemos que xKnAx1=i=1m|j=1naijxj|i=1mj=1n|aij||xj|=j=1n(|xj|i=mn|aij|)j=1n|xj|α=αj=1n|xj|=αx1

Ax1x1αxKn{0}A1α

Por otro lado, tomando z=ek el k-ésimo vector de la base canónica de Kn, con k=argmax\limits 1jni=1m|aij|, tenemos que

Az1z1=j=1n|aki|1=def kαdef. norma inducidaA1α

Por todo esto,

A1=α=max\limits 1jni=1m|aij|
A=max\limits 1imj=1n|aij|, que es simplemente la máxima suma absoluta de las filas de la matriz.
Demostración:

Sea

β=max\limits 1imj=1n|aij|.

Tenemos que

xKnAx=max\limits 1im|j=1naijxj|max\limits 1im|j=1naijx|max\limits 1imj=1n|aij|x=xmax\limits 1imj=1n|aij|=xβAxxβxKn{0}Aβ

Por otro lado, si definimos

k=argmax\limits 1imj=1n|aij|

y definimos

z=(sgn(ak1)sgn(akn))

, tenemos que

z=1

y

Az=(j=1nsgn(akj)a1jj=1nsgn(akj)anj)

, por lo que

(Az)i=j=1msgn(akj)aijj=1msgn(akj)aij=j=1m|aij|def ββ=max\limits 1imj=1n|aij|=def kj=1m|akj|=j=1msgn(akj)akj=(Az)k

y

(Az)i=j=1msgn(akj)aijj=1msgn(aij)aij=j=1m|aij|j=1m|akj|=(Az)k

. Así,

|(Az)i||(Az)k|i

y, por tanto,

Azz=max\limits 1im|(Az)i|=(Az)k=βAβ

. Por todo esto,

A=β=max\limits 1imj=1n|aij|


Por ejemplo, si la matriz A se define como

A=[357264028],

se tiene ||A||1 = Max (5, 13, 19) = 19. y ||A|| = Max (15, 12, 10) = 15

En el caso especial de p = 2 (la norma euclídea) y m = n (matrices cuadradas), la norma inducida es la norma espectral. La norma espectral de una matriz A es el valor singular más grande de A o la raíz cuadrada del valor propio más grande de la matriz semidefinida-positiva A*A:

A2=λmax(A*A)=σmax(A)

donde A* denota la traspuesta conjugada de A.

En el caso más general, uno puede definir una norma matricial subordinada en m×n inducida por α en n, y β en m como:

Aα,β=max\limits x0Axβxα.

Las normas subordinadas son consistentes con las normas que las inducen, dando

AxβAα,βxα.

Demostración:

Si

x0

, tenemos que

AxβAα,βxαAα,βAxβxα

, lo cual es siempre cierto pues, por definición,

Aα,β=max\limits x0Axβxα.

Si

x=0

,

Axβ=0

y

xα=0

, por lo que la desigualdad es trivialmente cierta.

Cualquier norma inducida satisface la desigualdad

Aρ(A),

donde ρ(A) es el radio espectral de A. De hecho, se ρ(A) es el ínfimo de todas las normas inducidas de A.

Además, para matrices cuadradas se tiene la fórmula del radio espectral:

limrAr1/r=ρ(A).

Normas componente a componente o «Entrywise»

Estas normas tratan una matriz de m×n veces como un vector de tamaño mn, y el usando una de las normas de vectores conocida.

Por ejemplo, utilizando la p-norma de vectores, obtenemos

Ap=(i=1mj=1n|aij|p)1/p.

Norma de Frobenius

Para p = 2, esto se llama la norma de Frobenius o norma de Hilbert-Schmidt, aunque este último término es a menudo reservado para los operadores de Espacio de Hilbert. Esta norma se puede definir de varias maneras:

AF=i=1mj=1n|aij|2=Tr(ATA)=i=1min{m,n}σi2

donde AT denota la traspuesta de A , σi son los valores singulares de A. La norma Frobenius es muy similar a la norma euclidiana en n y viene de un producto interno en el espacio de todas las matrices.

La norma de Frobenius es submultiplicativa y es muy útil para álgebra lineal numérica. Esta norma es a menudo más fácil de calcular que las normas inducidas.

Referencias

  1. Golub, Gene; Charles F. Van Loan (1996). Matrix Computations - Third Edition. Baltimore: The Johns Hopkins University Press, 56-57. ISBN 0-8018-5413-X.
  2. Roger Horn and Charles Johnson. Matrix Analysis, Chapter 5, Cambridge University Press, 1985. ISBN 0-521-38632-2.
  3. Douglas W. Harder, Matrix Norms and Condition Numbers [1]
  4. James W. Demmel, Applied Numerical Linear Algebra, section 1.7, published by SIAM, 1997.
  5. Carl D. Meyer, Matrix Analysis and Applied Linear Algebra, published by SIAM, 2000. [2]
  6. John Watrous, Theory of Quantum Information, 2.4 Norms of operators, lecture notes, University of Waterloo, 2008.

Plantilla:Control de autoridades