Rotación irracional

De testwiki
Ir a la navegación Ir a la búsqueda

En teoría matemática de los sistemas dinámicos, una rotación irracional es una función matemática.

Tθ:[0,1][0,1],Tθ(x)x+θmod1

donde θ es un número irracional. En virtud de la identificación de una circunferencia con R/Z o el intervalo [0, 1] con los puntos de los límites relacionados directamente entre sí, esta función se convierte básicamente en una rotación de una circunferencia en una proporción θ de una revolución completa, es decir, un ángulo de 2πθ radianes. Siendo θ irracional, la rotación tiene orden infinito en el grupo circular, mientras que la función Tθ no tiene órbitas periódicas.

Alternativamente, se puede usar la notación multiplicativa para una rotación irracional introduciendo la siguiente función:

Tθ:S1S1,Tθ(x)=xe2πiθ

La relación entre las notaciones aditivas y multiplicativas es el isomorfismo:

ϕ:([0,1],+)(S1,)ϕ(x)=xe2πiθ.

Con esto se demuestra que Plantilla:Math es una isometría.

Véase también

Plantilla:Portal

Bibliografía

  • C. E. Silva, Invitation to ergodic theory, Student Mathematical Library, vol 42, American Mathematical Society, 2008 ISBN 978-0-8218-4420-5.
  • Nillsen, Rod. IRRATIONAL ROTATIONS MOTIVATE MEASURABLE SETS University of Wollongong.

Plantilla:Control de autoridades