Topología euclidiana

De testwiki
Revisión del 20:17 21 jul 2024 de imported>Prototype~eswiki (Construcción)
(difs.) ← Revisión anterior | Revisión actual (difs.) | Revisión siguiente → (difs.)
Ir a la navegación Ir a la búsqueda

En matemáticas, y especialmente en topología general, la topología euclidiana o topología euclídea es un ejemplo de topología dado por el conjunto de los números reales, denotados mediante R. Dado el conjunto R una topología significa decir que los subconjuntos de R son «abiertos», y hacerlo de tal manera que los siguientes axiomas se cumplan:[1]

  1. La unión de conjuntos abiertos es un conjunto abierto.
  2. La intersección finita de conjuntos abiertos es un conjunto abierto.
  3. El conjunto R y el conjunto vacío ∅ son conjuntos abiertos.

Construcción

Se requiere que el conjunto R y el conjunto vacío ∅ sean conjuntos abiertos, así que se definirá R y ∅ como conjuntos abiertos en esta topología. Dados dos números reales, por ejemplo x e y, con Plantilla:Nowrap se define una familia incontable infinita de conjuntos abiertos denotados mediante Sx,y como sigue:[1]

Sx,y={r𝐑:x<r<y}.

Junto con el conjunto R y el conjunto vacío ∅, los conjuntos Sx,y con Plantilla:Nowrap son usados como base para la topología euclidiana. En otras palabras, los conjuntos abiertos de la topología euclidiana son dados por el conjunto R, el conjunto vacío ∅ y las uniones e intersecciones finitas de varios conjuntos Sx,y para los diferentes pares (x,y).

Propiedades

Referencias

Plantilla:Listaref

Plantilla:Control de autoridades