Teorema del coseno

De testwiki
Ir a la navegación Ir a la búsqueda

Plantilla:Artículo bueno

El teorema del coseno, denominado también como ley de cosenos [1] o teorema de al-Kashi,[2] es una generalización del teorema de Pitágoras en los triángulos rectángulos en trigonometría.

El teorema relaciona un lado de un triángulo cualquiera con los otros dos y con el coseno del ángulo formado por estos dos lados:

Plantilla:Teorema

En la mayoría de los idiomas, este teorema es conocido con el nombre de teorema del coseno, denominación no obstante relativamente tardía. En francés, sin embargo, lleva el nombre del matemático persa Ghiyath al-Kashi que unificó los resultados de sus predecesores.

Fig. 1 - Notación más habitual de un triángulo.

Historia

Los Elementos de Euclides, que datan del Plantilla:Siglo, contienen ya una aproximación geométrica de la generalización del teorema de Pitágoras: las proposiciones 12 y 13 del libro II, tratan separadamente el caso de un triángulo obtusángulo y el de un triángulo acutángulo. La formulación de la época es arcaica ya que la ausencia de funciones trigonométricas y del álgebra obligó a razonar en términos de diferencias de áreas.[3] Por eso, la proposición 12 utiliza estos términos:

Plantilla:Cita

Siendo ABC el triángulo, cuyo ángulo obtuso está en C, y BH la altura respecto del vértice B (cf. Fig. 2 contigua), la notación moderna permite formular el enunciado así:

Fig. 2 - Triángulo ABC con altura BH.

Plantilla:Ecuación

Faltaba esperar la trigonometría árabe-musulmana de la Edad Media para ver al teorema evolucionar a su forma y en su alcance: el astrónomo y matemático al-Battani[4] generalizó el resultado de Euclides en la geometría esférica a principios del Plantilla:Siglo, lo que permitió efectuar los cálculos de la distancia angular entre el Sol y la Tierra.[5][6] Fue durante el mismo período cuando se establecieron las primeras tablas trigonométricas, para las funciones seno y coseno. Eso permitió a Ghiyath al-Kashi,[2] matemático de la escuela de Samarcanda, de poner el teorema bajo una forma utilizable para la triangulación durante el Plantilla:Siglo. La propiedad fue popularizada en occidente por François Viète quien, al parecer, lo redescubrió independientemente.[7]

Fue a finales del Plantilla:Siglo cuando la notación algebraica moderna, aunada a la notación moderna de las funciones trigonométricas introducida por Euler en su libro Introductio in analysin infinitorum, permitieron escribir el teorema bajo su forma actual, extendiéndose el nombre de teorema (o ley) del coseno.[8]

El teorema y sus aplicaciones

El teorema del coseno es también conocido por el nombre de teorema de Pitágoras generalizado, ya que el teorema de Pitágoras es un caso particular: cuando el ángulo

γ

es recto o, dicho de otro modo, cuando

cosγ=0

, el teorema del coseno se reduce a:

Fig. 3 - Utilización del teorema del coseno: ángulo o lado desconocido.

Plantilla:Ecuación que es precisamente la formulación del teorema de Pitágoras.

El teorema se utiliza en triangulación (ver Fig. 3) para resolver un triángulo, y saber determinar:

  • el tercer lado de un triángulo cuando conocemos un ángulo y los lados adyacentes:

Plantilla:Ecuación

  • los ángulos de un triángulo cuando conocemos los tres lados:

Plantilla:Ecuación

Fig. 3b - Variación de la hipotenusa acorde con el ángulo opuesto, manteniendo catetos fijos.

Estas fórmulas son difíciles de aplicar en el caso de mediciones de triángulos muy agudos utilizando métodos simples, es decir, cuando el lado c es muy pequeño respecto los lados a y b —o su equivalente, cuando el ángulo γ es muy pequeño.

Existe un corolario del teorema del coseno para el caso de dos triángulos semejantes ABC y A'B'C' Plantilla:Ecuación

Demostraciones

Por desglose de áreas

Fig. 4a - Demostración del teorema del coseno por desglose de áreas, cuando el ángulo es agudo.

Un cierto número de las demostraciones del teorema hacen intervenir un cálculo de áreas. Conviene en efecto remarcar que

  • a2, b2, c2 son las áreas de los cuadrados de lados respectivos a, b, c.
  • ab cos(γ) es el área de un paralelogramo de lados a y b que forman un ángulo de 90°-γ (para una prueba, ver el apéndice).

Dado que cos(γ) cambia de signo dependiendo de si γ es mayor o menor a 90°, se hace necesario dividir la prueba en dos casos.

La figura 4a (contigua) divide un heptágono de dos maneras diferentes para demostrar el teorema del coseno en el caso de un ángulo agudo. La división es la siguiente:

  • En verde, las áreas a2, b2 la izquierda, y el área, c2 a la derecha.
  • En rojo, el triángulo ABC en ambos diagramas y en amarillo triángulos congruentes al ABC.
  • En azul, paralelogramos de lados a y b con ángulo 90°-γ.

Igualando las áreas y cancelando las figuras iguales se obtiene que a2+b2=c2+2abcosγ, equivalente al Teorema del coseno.Plantilla:Clear

Fig. 4b - Demostración del teorema del coseno por desglose de áreas, cuando el ángulo es obtuso.

La figura 4b (contigua) desglosa un hexágono de dos maneras diferentes para demostrar el teorema del coseno en el caso de un ángulo obtuso. La figura muestra

  • En verde a2, b2 la izquierda y c2 a la derecha.
  • En azul -2ab cos(γ), recordando que al ser cos(γ) negativo, la expresión completa es positiva.
  • En rojo, dos veces el triángulo ABC para ambos lados de la figura.

Igualando áreas y cancelando las zonas rojas da a2+b22abcosγ=c2, como queríamos demostrar.

Por el teorema de Pitágoras

Notemos que el teorema de cosenos es equivalente al teorema de Pitágoras cuando el ángulo γ es recto. Por tanto sólo es necesario considerar los casos cuando c es adyacente a dos ángulos agudos y cuando c es adyacente a un ángulo agudo y un obtuso.

Caso 1: c es adyacente a dos ángulos agudos

Primer caso: c es adyacente a dos ángulos agudos.

Consideremos la figura adjunta. Por el teorema de Pitágoras, la longitud c es calculada así: Plantilla:Ecuación Pero, la longitud h también se calcula así: Plantilla:Ecuación

Sumando ambas ecuaciones y luego simplificando obtenemos: Plantilla:Ecuación

Por la definición de coseno, se tiene: Plantilla:Ecuación y por lo tanto: Plantilla:Ecuación Sustituimos el valor de u en la ecuación para c2, concluyendo que: Plantilla:Ecuación con lo que concluye la prueba del primer caso.

Caso 2: c es adyacente a un ángulo obtuso

Segundo caso: c es adyacente a un ángulo obtuso.

Consideremos la figura adjunta. El teorema de Pitágoras establece nuevamente c2=h2+u2 pero en este caso h2=a2(b+u)2. Combinando ambas ecuaciones obtenemos c2=u2+a2b22buu2 y de este modo: Plantilla:Ecuación

De la definición de coseno, se tiene cosγ=b+ua y por tanto: Plantilla:Ecuación Sustituimos en la expresión para c2=a2b22b(acosγ b), concluyendo nuevamente Plantilla:Ecuación Esto concluye la demostración. c2 = a2 - b2 - 2b(a cos(γ) - b) Es importante notar, que si se considera a u como un segmento dirigido, entonces sólo hay un caso y las dos demostraciones se convierten en la misma. Plantilla:Clear

Por la potencia de un punto con respecto a un círculo

Fig. 6 - Demostración del teorema del coseno utilizando la potencia de un punto con respecto a un círculo.

Consideremos un círculo con centro en B y radio BC, como en la figura 6. Si AC es tangente al círculo, nuevamente se tiene el Teorema de Pitágoras. Cuando AC no es tangente, existe otro punto K de corte con el círculo. La potencia del punto A con respecto a dicho círculo es Plantilla:Ecuación Por otro lado, AL = c+a y AP = c-a de modo que Plantilla:Ecuación

Además, CK= -2a cos(γ) (ver el apéndice) por lo que Plantilla:Ecuación

Igualando las expresiones obtenidas se llega finalmente a: Plantilla:Ecuación

Contrariamente a las precedentes, para esta demostración, no es necesario recurrir a un estudio por caso pues las relaciones algebraicas son las mismas para el caso del ángulo agudo. Plantilla:Clear

Por números complejos

Considere la figura de la derecha en el plano complejo.

Demostración del teorema del coseno utilizando la números complejos

Demostraremos que |c|2=|a|2+|b|22|a||b|cosγ

Por la gráfica sucede c=ba, sacando módulo al cuadrado:

|c|2=|ba|2

Por propiedad de complejos con conjugados (|u|2=uu):

|c|2=(ba)(ba)

|c|2=(ba)(ba)

Note que a=a porque a es real (vea la gráfica). Entonces:

|c|2=(ba)(ba)

|c|2=bbabab+a2

|c|2=bba(b+b)+a2

|c|2=bb|b|2a(b+b)2(b)+a2|a|2

|c|2=|b|2a2(b)+|a|2

Note que (b)=|b|cosγ (vea la gráfica). Luego:

|c|2=|b|2a2|b|cosγ+|a|2

Para finalizar, note que |a|=a (porque a es real positivo):

|c|2=|b|2|a|2|b|cosγ+|a|2

|c|2=|a|2+|b|22|a||b|cosγ Plantilla:Clear

Por el cálculo vectorial

Utilizando el cálculo vectorial, más precisamente el producto escalar, es posible encontrar el teorema del coseno en algunas líneas:

c2 =AB2
=CBCA2
=CB22CBCA+CA2
=CB22|CB||CA|cosACB^+CA2
=a2+b22abcosγ

Demostración geométrica

Cualquiera que sea el triángulo ABC se cumple que

AB2=AC2+BC22ACBCcosγ.

Si el ángulo γ es igual a 90°, la proposición se traduce al Teorema de Pitágoras, puesto que cos 90°=0. En el caso de que el ángulo sea agudo, según un teorema anterior se tiene que

AB2=AC2+BC22BCCD.

En el triángulo ACD, se cumple que CD=ACcosγ.. Por ello

AB2=AC2+BC22BCACcosγ.

Sea esta vez γ un ángulo obtuso, se cumple que:

AB2=AC2+BC2+2BCCD,

pero en el triángulo ADC,[9] se halla que CD=ACcos(ACD^).. Sin embargo el ángulo ACD es el suplemento del ángulo γ del triángulo ABC. De esta manera se tiene que cos(ACD^)=cosγ, por consiguiente ACcosγ y finalmente

AB2=AC2+BC22ACBCcosγ,

quedando demostrado el teorema.[10]

Generalización en geometrías no euclídeas

Fig. 7 - Triángulo esférico: dimensiones reducidas z, b y c ; ángulos α, β y γ.

Para una superficie no euclídea de curvatura K, señalamos con R el radio de curvatura. Este verifica

R=1|K|.

Definimos entonces las dimensiones reducidas del triángulo:

a=BCR,
b=ACR,
c=ABR.

En el caso de un triángulo esférico, a, b y c corresponden a la medida angular de los segmentos de circunferencia maximal[11] [BC], [AC] y [AB] (ver Fig. 7). Plantilla:Clear

Geometría esférica

Plantilla:AP Cuando el radio de curvatura es muy grande comparado con las dimensiones del triángulo, es decir cuando

a<<1,

esta expresión se simplifica para dar la versión euclídea del teorema del coseno. Para hacerlo,

cosa=1a2/2+O(a3), etc.

Existe una identidad similar que relaciona los tres ángulos:

cosγ=cosαcosβ+senαsenβcosc

Plantilla:Clear

Geometría hiperbólica

Plantilla:AP En un triángulo hiperbólico ABC, el teorema del coseno se escribe

coshc=coshacoshbsinhasinhbcosγ.

Cuando el radio de curvatura se vuelve muy grande frente las dimensiones del triángulo, encontramos el teorema del coseno euclídeo a partir de los desarrollos limitados

sinha=a+O(a3), etc.,
cosha=1+a2/2+O(a3), etc.

Generalización en el espacio euclídeo

Fig. 8 - Tetraedro: vértices, caras y ángulos.

Consideremos un tetraedro A1A2A3A4 del espacio euclídeo, siendo:

Sk la cara opuesta al vértice Ak ;
sk la superficie de Sk ;
Δk el plano que contiene a la cara Sk ;
θij el ángulo diedral (Δi,Δj)^.

(La figura 8, contigua, presenta la notación de los vértices, caras y ángulos del tetraedro).

Entonces, las superficies y ángulos verifican:

s42=s12+s22+s322s1s2cosθ12
2s1s3cosθ132s2s3cosθ23.

Plantilla:Clear

Apéndice

Área de un paralelogramo

Deducción del teorema sobre área de un paralelogramo

Se afirma: Plantilla:Teorema

Considérese un paralelogramo de lados a y b, formando un ángulo de θ, como en el diagrama. Dividiendo el paralelogramo por medio de una diagonal arroja dos zonas triangulares. En una de ellas, se construye una altura h como se muestra en la figura.

La zona triangular roja tiene por área ah/2. Por definición, sen(θ)=h/b,[12] de modo que h=b sen(θ). La sustitución en la fórmula del área triangular prueba que:[13] Plantilla:Teorema

Dado que el área del paralelogramo es el doble del triángulo,[14] se concluye que Plantilla:Teorema

La conclusión se sigue notando que si θ=90-γ entonces sen(θ)=sen(90°-γ) = cos(γ). Se hace notar también que la demostración es independiente de cual de las diagonales del paralelogramo se escoja, puesto que sen(θ)=sen(180°-θ).

Cuerdas en un círculo

Diagrama usado en la prueba basada en potencia de un punto

En la demostración del Teorema del coseno usando potencia de un punto, se afirma que el segmento CK en el diagrama mide precisamente -2a cos(γ).

La demostración más sencilla consiste en prolongar el segmento CB hasta cortar nuevamente la circunferencia en un punto D, de modo que CD es un diámetro del círculo, puesto que pasa por el centro del mismo.

Al ser un diámetro, el ángulo inscrito CKD es necesariamente recto por lo que el triángulo CKD es rectángulo. El ángulo DCK mide θ=180°-γ y por definición: Plantilla:Ecuación y por tanto Plantilla:Ecuación ya que cos(180°-x) = -cos(x) para cualquier valor de x.

Véase también

Referencias

Plantilla:Listaref

Bibliografía

Plantilla:Control de autoridades

  1. Granville-Smith-Mikesh. Trigonometría plana y esférica. UTeha, México D.F.(1982) ISBN 968-438-774-1
  2. 2,0 2,1 Plantilla:Cita web
  3. Plantilla:Cita libro
  4. Plantilla:Cita web
  5. Plantilla:MacTutor
  6. Plantilla:Cita web
  7. Plantilla:Cita libro
  8. Plantilla:Cita libro
  9. El punto D es la proyección ortogonal del punto A sobre el lado BC
  10. Pogorélov. Geometría elemental
  11. En geometría esférica el concepto de línea recta es reemplazado por el de geodésica la cual es la distancia más corta entre dos puntos dados de la misma y ésta es siempre una línea que debe pertenecer a una circunferencia máxima (también llamada maximal). Las circunferencias máximas son las líneas de intersección entre la superficie esférica y cualquier plano que pase por el centro de la misma, con estas restricciones se puede hablar aún de triángulos de lados geodésicos. Los triángulos esféricos no cumplen con que la suma de sus ángulos internos sea 180°, sin embargo la desigualdad triangular sigue vigente en geometría esférica.
  12. Plantilla:Cita web
  13. Plantilla:Cita web
  14. Plantilla:Cita libro