Relación transitiva

De testwiki
Ir a la navegación Ir a la búsqueda
Ejemplo: Si a es mayor que b, y b es mayor que c, entonces, a es mayor que c.

Una relación binaria R sobre un conjunto A es transitiva[1][2] cuando se cumple: siempre que un elemento se relaciona con otro y este último con un tercero, entonces el primero se relaciona con el tercero.

Esto es:

a,b,cA:aRbbRcaRc

Dado el conjunto A y una relación R, esta relación es transitiva si: a R b y b R c se cumple a R c.

La propiedad anterior se conoce como transitividad.

Ejemplos

Así por ejemplo dado el conjunto N de los números naturales y la relación de orden "menor o igual que" vemos que es transitiva:

a,b,c:abbcac

Así, puesto que:

2,5,7:255727

En general las relaciones de orden (ser menor, mayor, igual, menor o igual, mayor o igual) son transitivas.

Tomando de nuevo el conjunto de los números naturales, y la relación divide a:

a,b,c:a|bb|ca|c

Para cualquiera de los números naturales a, b y c: si a divide a b y b divide a c entonces a divide a c

Dado que 3|12 (3 divide a 12) y 12|48 (12 divide a 48), la transitividad establece que 3|48 (3 divide a 48).

Sin embargo, no todas las relaciones binarias son transitivas. La relación "no es subconjunto" no es transitiva. Por ejemplo, si X = {1,2,3}, Y={2,3,4,5}, Z={1,2,3,4}. Entonces Plantilla:Ecuación

Otro ejemplo de relación binaria que no es transitiva es "ser la mitad de": 5 es la mitad de 10 y 10 es la mitad de 20, pero 5 no es la mitad de 20.

Representación

Una relación binaria se puede representar como pares ordenados, mediante una matriz de adyacencia o mediante un grafo. Para el caso de una relación transitiva, cada una de estas representaciones tiene características especiales:

  • Como grafo, cada vez que desde un nodo v1 se pueda llegar a otro v3, pasando primero por un nodo intermedio v2, entonces también existirá la arista (v1,v3).

Véase también

Propiedades de la relación binaria homogénea: Plantilla:Columnas

Plantilla:Nueva columna

Plantilla:Nueva columna

Plantilla:Nueva columna

Plantilla:Nueva columna

Plantilla:Final columnasConceptos relacionados:

Referencias

Plantilla:Listaref


Plantilla:Control de autoridades